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Abstract

Online services such as web search, news portals, and e-
commerce applications face the challenge of providing high-
quality experiences to a large, heterogeneous user base. Re-
cent efforts have highlighted the potential to improve perfor-
mance by personalizing services based on special knowledge
about users. For example, a user’s location, demographics,
and search and browsing history may be useful in enhanc-
ing the results offered in response to web search queries.
However, reasonable concerns about privacy by both users,
providers, and government agencies acting on behalf of citi-
zens, may limit access to such information. We introduce and
explore an economics of privacy in personalization, where
people can opt to share personal information in return for
enhancements in the quality of an online service. We focus
on the example of web search and formulate realistic objec-
tive functions for search efficacy and privacy. We demonstrate
how we can identify a near-optimal solution to the utility-
privacy tradeoff. We evaluate the methodology on data drawn
from a log of the search activity of volunteer participants. We
separately assess users’ preferences about privacy and utility
via a large-scale survey, aimed at eliciting preferences about
peoples’ willingness to trade the sharing of personal data in
returns for gains in search efficiency. We show that a signif-
icant level of personalization can be achieved using only a
small amount of information about users.

Introduction
Information about the preferences, activities, and demo-
graphic attributes of people using online applications can
be leveraged to personalize the services for individuals and
groups of users. For example, knowledge about the locations
of users performing web searches can help identify their
informational goals. Researchers and organizations have
pursued explicit and implicit methods for personalizing
online services. For web search, explicit personalization
methods rely on users indicating sets of topics of interest
that are stored on a server or client. Implicit methods make
use of information collected in the absence of user effort
and awareness. Data collected implicitly in web search can
include users’ locations and search activities, capturing such
information as how people specify and reformulate queries
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and click, dwell, and navigate on results. Beyond web
search, data collected about users in an implicit manner can
be used to custom-tailor the behaviors of a broad spectrum
of online applications from informational services like news
summarizers to e-commerce services that provide access
to online shopping, and that seek to maximize sales with
targeted advertising.

The potential value of harnessing data about people to
enhance online services coupled with the growing ubiquity
of online services raises reasonable concerns about privacy.
Both users and the hosts of online applications may benefit
from the custom-tailoring of services. However, both may be
uncomfortable with the access and use of personal informa-
tion. There has been increasing discussion about incursions
into the privacy of users implied by the general logging and
storing of online data (Adar 2007). Beyond general anxieties
with sharing personal information, people may more specif-
ically have concerns about becoming increasingly identifi-
able; as increasing amounts of personal data are acquired,
users become members of increasingly smaller groups of
people associated with the same attributes.

Most work to date on personalizing online services has
either ignored the challenges of privacy and focused efforts
solely on maximizing utility (c.f., Sugiyama, Hatano, and
Ikoma 2004) or has completely bypassed the use of personal
data. One vein of research has explored the feasibility of
personalizing services with methods that restrict the collec-
tion and analysis of personal data to users’ own computing
devices (Horvitz 2006). Research in this realm includes ef-
forts to personalize web search by making use of the content
stored on local machines, as captured within the index of a
desktop search service (Teevan, Dumais, and Horvitz 2005;
Xu, Zhang, and Wang 2007).

Rather than cutting off opportunities to make personal
data available for enhancing online services or limit per-
sonalization to client-side analyses, we introduce and study
utility-theoretic methods that balance the costs of sharing of
personal data with online services in return for the benefits
of personalization. Such a decision-theoretic perspective on
privacy can allow systems to weigh the benefits of enhance-
ments that come with adaptation with the costs of sensing
and storage according to users’ preferences.



We characterize the utility of sharing attributes of private
data via value-of-information analyses that take into consid-
eration the preferences to users about the sharing of personal
information. We explicitly quantify preferences about utility
and privacy and then solve an optimization problem to find
the best trade. Our approach is based on two fundamental
observations. The first is that, for practical applications, the
utility gained with sharing of personal data may often have
a diminishing returns property; acquiring more information
about a user adds decreasing amounts to utility given what
is already known about the user’s needs or intentions. On
the contrary, the more information that is acquired about a
user, the more concerning the breach of privacy becomes.
For example, a set of individually non-identifying pieces of
information may, when combined, hone down the user to
membership in a small group, or even identify an individual.
We map the properties of diminishing returns on utility and
the concomitant accelerating costs of revelation to the com-
binatorial concepts of submodularity and supermodularity,
respectively.

Although the economic perspective on privacy is relevant
to a wide spectrum of applications, and to studies of the
foundations of privacy more broadly, we shall illustrate
the concepts in application to personalizing web search.
We employ a probabilistic model to predict the website
that a searcher is going to visit given the search query and
attributes describing the user. We define the utility of a set of
personal attributes by the focusing power of the information
gained with respect to the prediction task. Similarly, we
use the same probabilistic model to quantify the risk of
identifying users given a set of personal attributes. We then
combine the utility and cost functions into a single objective
function, which we use to find a small set of attributes
which maximally increases the likelihood of predicting the
target website, while making identification of the user as
difficult as possible.

The challenges of this optimization are in learning the
benefits and costs and grappling with its computational
hardness. Solving for the best set of attributes for users to re-
veal (and hence for the optimal setting of the utility-privacy
tradeoff) is an NP-hard search problem, and thus intractable
in general for large sets of attributes. We shall demonstrate
how we can use the submodularity of the utility and
supermodularity of privacy in order to find a near-optimal
tradeoff efficiently. To our knowledge, no existing approach
(such as LeFevre, DeWitt, and Ramakrishnan 2006, Chen,
LeFevre, and Ramakrishnan 2007, Hore and R. Jammala-
madaka 2007) provides such theoretical guarantees. We
evaluate our approach on real-world search log data, as
well as from data collected from a user study with over
1400 participants focused on the elicitation of preferences
about sharing sensitive information. Our results indicate the
existence of prominent “sweet spots” in the utility-privacy
tradeoff curve, at which most of the utility can be achieved
with the sharing of a minimal amount of private information.

Privacy-Aware Personalization
We consider the challenge of web search personalization
as diagnosis under uncertainty. We seek to predict the
searcher’s information goals, given such noisy clues as
query terms and potentially additional attributes that de-
scribe users and their interests and activities. We frame
the problem probabilistically (e.g., as done by Dou, Song,
and Wen 2007 and Downey, Dumais, and Horvitz 2007)
by modeling a joint distribution P over random variables,
which comprise the target intention X , some request-
specific attributes (e.g., the query term) Q, the identity of
the user Y , and several attributes V = {V1, V2, . . . , Vn}
containing private information. Such attributes include
user-specific variables (such as demographic information,
search history, word frequencies on the local machine, etc.)
and request-specific variables (such as the period of time
since an identical query was submitted). We describe the
attributes used in this work for the web search context in
Table 1. We use statistical techniques to learn such a model
P from training data for frequent queries. Then, we present
methods for trading off utility and privacy in the context of
this probabilistic model.

Utility of accessing private data. Upon receiving a new
query Q, and given a subset A ⊆ V of the attributes,
we can use the probabilistic model to predict the user’s
target intention by performing inference, computing the
conditional distribution P (X | Q,A). Then, we use this
distribution to inform the decision of, e.g., which search
results to present to the user. The hope in personalization is
that additional knowledge about the user (i.e., the observed
set of attributes A) will help to simplify the prediction
task, via reducing the uncertainty in P (X | Q,A).
Based on this intuition, we quantify the uncertainty in
our prediction using the conditional Shannon entropy
H(X | Q,A) = −

∑
x,q,a P (x, q,a) log2 P (x | q,a).

Hence, for any subset A ⊆ V , we define its util-
ity U(A) to be the information gain, i.e., ex-
pected entropy reduction achieved by observing A:
U(A) = H(X | Q)−H(X | Q,A). Click entropy has pre-
viously been found effective by Dou, Song, and Wen (2007).

Cost of sharing private data. Several different mod-
els of privacy have been proposed in prior work (c.f.,
Sweeney 2002, Machanavajjhala et al. 2006, Dwork 2006).
Our cost function is motivated by the consideration that, ce-
teris paribus, people prefer sets of attributes A ⊆ V which
make identification of an individual user more difficult. We
can consider the observed attributesA as noisy observations
of the (unobserved) identity Y = y of the user. Intuitively,
we want to associate high cost C(A) with sets A which
allow accurate prediction of Y given A, and low cost for
sets A for which the conditional distributions P (Y | A)
are highly uncertain. For a distribution P (Y ) over users, we
hence define an identifiability loss function L(P (Y )) which
maps probability distributions over users Y to the real num-
bers. We will choose L such that if there exists a user y with



P (Y = y) close to 1, then the loss L(P (Y )) is high. If P (Y )
is the uniform distribution, then L(P (Y )) should be low.

One possible choice for the loss L is the negative en-
tropy of the distribution P (Y ), as used to quantify utility.
However, in the context of privacy, this choice is rather
poor: Consider a case where we want to quantify the iden-
tifiability cost of learning the searcher’s gender. Assuming
an equal distribution of the gender, learning the gender
of the searcher would roughly halve the space of possible
searchers, hence increasing the entropy loss by roughly 1.
However, this increase is independent of whether we start
with (A) one billion or (B) only two searchers. In contrast
to the influence on utility, where halving the search space
of pages to consider is a very large gain independently of
how many pages we start with (Dou, Song, and Wen 2007),
this diminishment of privacy is enormous: In case (A), an
adversary trying to identify the searcher based on knowing
their gender has almost no chance of success, whereas in
case (B) they would always identify the person. Motivated
by this consideration, we represent the privacy cost in our
experiments as the maxprob loss (Chen, LeFevre, and Ra-
makrishnan 2007), Lm(P (Y )) = maxy P (y). Other losses,
e.g., based on k-anonymity (Sweeney 2002) are possible as
well (see Lebanon et al. 2006 for a justification of using de-
cision theory to quantify privacy and how inferential attacks
through side information can be handled). Based on the loss
function, we define the identifiability cost I(A) as the ex-
pected loss of the conditional distributions P (Y | A = a),
where the expectation is taken over the observations A = a.

We also introduce an additive cost component
S(A) =

∑
a∈A s(a), where s(a) ≥ 0 models the subjective

sensitivity of attribute a, and other additive costs, such as
data acquisition cost, etc. The final cost function C(A) is
a convex combination of the identifiability cost I(A) and
sensitivity S(A), i.e., C(A) = ρI(A) + (1− ρ)S(A).

Optimizing the Utility-Privacy Tradeoff
Previously, we described how we can quantify the utility
U(A) for any given set of attributes A, and its associated
privacy cost C(A). Our goal is to find a set A, that maxi-
mizes U(A) while keeping C(A) as small as possible. In
order to solve for this tradeoff, we use scalarization (c.f.,
Boyd and Vandenberghe 2004), by defining a new, scalar
objective Fλ(A) = U(A) − λC(A). Hereby, λ can be
considered a privacy-to-utility conversion factor. The goal
is to solve the following optimization problem:

A∗
λ = argmax

A
Fλ(A) (1)

By varying λ, we can find different solutions A∗
λ. Choosing

a small λ, leads to solutions with higher utility and higher
cost, while selecting large values of λ will lead to solutions
with lower utility, but also lower privacy cost. If the set of
attributes V is large, then solving (1) poses a difficult search
problem; the number of subsets A grows exponentially
in the size of V . It can be shown that the solution to this
problem is even hard to approximate:
Theorem 1. If there is a constant α > (1− 1/e) and there
exists an algorithm which is guaranteed to find a setA′ such
that F1(A′) ≥ α maxA F1(A), then P = NP .

The proofs of all theorems are presented in (Krause and
Horvitz 2007). Given the complexity, we cannot expect to
find a solution A∗ efficiently which achieves even slightly
more than (1− 1/e) ≈ 63% of the optimal score. However,
as we show in the following, we can find a solution which
is guaranteed to achieve at least 1/3 of the optimal score.

Properties of the Utility-Privacy Tradeoff
As mentioned above, we would expect intuitively that the
more information we already have about a user (i.e., the
larger |A|), the less the observation of a new, previously un-
observed, attribute would help with enhancing a service. The
combinatorial notion of submodularity formalizes this intu-
ition. A set function G : 2V → R mapping subsets A ⊆ V
into the real numbers is called submodular (Nemhauser,
Wolsey, and Fisher 1978), if for all A ⊆ B ⊆ V , and
V ′ ∈ V \ B, it holds that G(A ∪ {V ′}) − G(A) ≥
G(B ∪ {V ′} −G(B), i.e., adding V ′ to a set A increases G
more than adding V ′ to a superset B ofA. G is called nonde-
creasing, if for all A ⊆ B ⊆ V it holds that G(A) ≤ G(B).

A result described in Krause and Guestrin (2005) shows
that, under certain conditional independence conditions, the
click entropy reduction is submodular and nondecreasing:
Theorem 2 (Krause and Guestrin 2005). Assume, the at-
tributes A are conditionally independent given X . Then
U(A) is submodular in A.

We discussed earlier how we expect the privacy cost
to behave differently than the utility with the addition of
attributes: Adding a new attribute would likely make a
stronger incursion into personal privacy when we already
know a great deal about a user, and less if we know little.
This “accelerating costs” property naturally corresponds to
the combinatorial notion of supermodularity: A set function
G : 2V → R is called supermodular (Nemhauser, Wolsey,
and Fisher 1978), if for all A ⊆ B ⊆ V , and V ′ ∈ V \ V , it
holds that G(A ∪ {V ′}) − G(A) ≤ G(B ∪ {V ′} − G(B),
i.e., adding V ′ to a large set B increases G more than adding
V ′ to a subset A of B.
Theorem 3. Assume that the attributes V are marginally
independent and that the user Y is completely characterized
by the attributes, i.e., Y = (V). Then the maxprob loss I(A)
is supermodular in A.

Note that the attribute sensitivity S(A) is additive per
definition and hence supermodular as well. Thus, as a
positive linear combination of supermodular functions,
C(A) = ρI(A)+(1−ρ)S(A) is supermodular inA. In our
empirical evaluation, we verify the submodularity of U(A)
and supermodularity C(A) even without the assumptions
made by Theorem 2 and Theorem 3.

Motivated by the above insights about the combinatorial
properties of utility and privacy, in the following we present
a general approach for trading off utility and privacy. We as-
sume only that the utility U(A) is a submodular set function,
whereas C(A) is a supermodular set function. We define
the general utility-privacy tradeoff problem as follows:



Problem 4. Given a set V of possible attributes to select, a
nondecreasing submodular utility function U(A), a nonde-
creasing supermodular cost function C(A), and a constant
λ ≥ 0, our goal is to find a set A∗ such that

A∗ = argmax
A

Fλ(A) = argmax
A

U(A)− λC(A) (2)

Since C(A) is supermodular if and only if −C(A) is
submodular, and since nonnegative linear combinations
of submodular set functions are submodular as well, the
scalarized objective Fλ(A) = U(A) − λC(A) is submod-
ular as well. Hence, problem (2) requires the maximization
of a submodular set function.

Optimization Algorithms
As the number of subsets A ⊆ V grows exponentially with
the size of V , and because of the NP-hardness of Prob-
lem (1), we cannot expect to find the optimal solutionA∗ ef-
ficiently. A fundamental result by Nemhauser, Wolsey, and
Fisher (1978) characterizes the performance of the simple
greedy algorithm, which starts with the empty set A = ∅
and greedily adds the attribute which increases the score the
most, i.e., A ← A ∪ argmaxV ′ F (A ∪ {V ′}), until k ele-
ments have been selected (where k is a specified constant).
It was shown that, if F is nondecreasing, submodular and
F (∅) = 0, then the greedy solution AG satisfies F (AG) ≥
(1−1/e) max|A|=k F (A), i.e., the greedy solution is at most
a factor of 1 − 1/e off from the optimal solution. Although
this result would allow us to select a near-optimal set of k
private attributes maximizing the utility U(A) (which sat-
isfies the conditions of the result from Nemhauser, Wolsey,
and Fisher 1978), it does not apply in the more general case,
where our objective Fλ(A) is not nondecreasing.

The problem of maximizing such non-monotone sub-
modular functions has been resolved recently by Feige,
Mirrokni, and Vondrak (2007). A local search algorithm,
named LS, was proved to guarantee a near-optimal so-
lution ALS , if F is a nonnegative1 (but not necessarily
nondecreasing) submodular function. More formally,
for the solution ALS returned by LS, it holds that
F (ALS) ≥

(
1
3 −

ε
n

)
maxA F (A).

Evaluating utility and cost. To run LS, we need to be
able to efficiently evaluate the utility U(A) and cost C(A).
In principle, we can compute the objective functions from
the empirical distribution of the training data, by explicitly
evaluating the sums defining U(A) and C(A). However,
this approach is very inefficient—Ω(N2) where N is the
number of training examples. Instead, we can estimate
U(A) and C(A) by Monte Carlo sampling.

The following Lemma by Krause & Guestrin (2005) pro-
vides sample complexity bounds for estimating the click en-
tropy reduction U(A).

1If F takes negative values, then it can be normalized by con-
sidering F ′(A) = F (A) − F (V), which however can impact the
approximation guarantees.

Lemma 5 (Krause & Guestrin 2005). For any ε > 0 and

δ > 0, we need
⌈

1
2

(
log2 | dom(X)|

ε

)2

log 1
δ

⌉
samples in or-

der to estimate U(A) to absolute error ε with confidence at
least 1− δ.

Hereby, |dom(X)| is the number of different values X
can assume. Using a similar argument, we can also prove
sample complexity bounds for calculating the cost C(A) of
sets of attributes:

Lemma 6. For any ε > 0 and δ > 0, we need
⌈

1
2ε2 log 1

δ

⌉
samples in order to estimate C(A) to absolute error ε with
confidence at least 1− δ.

Lemmas 5 and 6 bound the number of samples required to
approximate U(A) and C(A) to arbitrary precision ε, with
high probability 1− δ.

We also show, how we can generalize the result from
Feige, Mirrokni, and Vondrak (2007) to also hold in the case
where utility and cost are estimated only up to small constant
error ε. The following theorem summarizes our analysis:
Theorem 7. If λ such that Fλ(V) ≥ 0, then LS, using
sampling to estimate C(A) and U(A), computes a solution
AELS such that Fλ(AELS) ≥

(
1
3 −

ε
n

)
maxA Fλ(A) −

nεS , with probability at least 1 − δ. The algorithm uses at

most O
(

1
εn3 log n

(
log2(| dom(X)|)

εS

)2

log 1
δn3

)
samples.

Finding the optimal solution. While LS allows us to find
a near-optimal solution in polynomial time, submodularity
of Fλ can also be exploited to find an optimal solution in
a more informed way, allowing us to bypass an exhaustive
search through all exponentially many subsets A. Existing
algorithms for optimizing submodular functions include
branch and bound search, e.g., in the data-correcting
algorithm (Goldengorin et al. 1999), as well as mixed-
integer programming (Nemhauser and Wolsey 1981).
These techniques do not require any assumptions about the
positiveness of Fλ.

Experimental Results
We now describe the real-world grounding of the utility-
theoretic methods via the acquisition of preferences about
privacy and evaluation with a log of search activity.

Survey on Privacy Preferences
Although identifiability is an important part of privacy, peo-
ple may have different preferences about sharing individual
attributes (Olson, Grudin, and Horvitz 2005). We set out
to assess preferences about cost and benefits of sharing
personal data. Related work has explored the elicitation of
private information (c.f., Huberman, Adar, and Fine 2005,
Wattal et al. 2005, Hann et al. 2002). We are not familiar
with a similar study for the context of web search. Our
survey was designed specifically to probe preferences about
revealing different attributes of private data in return for
increases in the utility of a service. Prior research (Olson,
Grudin, and Horvitz 2005) has demonstrated that peoples’



willingness to share information depends greatly on the type
of information being shared, with whom the information
is shared, and how the information is going to be used. In
designing the survey, we assessed preferences for sharing in
a low-risk situation, where “personal information would be
shared and used only with respect to a single specified query,
and discarded immediately thereafter.” Our survey contained
questions both on the sensitivity of individual attributes and
on concerns about identifiability. The survey was distributed
to multiple divisions within the Microsoft Corporation via
an online survey tool. We motivated people to take the
survey by giving participants a chance to win a media player
via a random drawing. The survey was open to worldwide
entries, and we received a total of 1451 responses.

Label bits Description
DGDR 1 Gender (*)
DAGE 2 Age group (<18, 18-50, >50) (*)
DOCC 3 Occupation (6 groups of related jobs) (*)
DREG 2 Region (4 geographic regions)
DMTL 1 Marital status (*)
DCHD 1 Whether the searcher has children or not (*)
AQRY 1 Performed same query before
ACLK 1 Visited same website before
AFRQ 1 User performs ≥ 1 query/day on average
AZIP 1 User queried from ≥ 2 different zip codes
ACTY 1 User queried from ≥ 2 different cities
ACRY 1 User queried from ≥ 2 different countries
AWHR 1 Current query during working hours
AWDY 1 Current query during workday / weekend
ATLV 2 Top-level of query IP (.com, .net, .org, .edu)
TART 1 User prev. visit. arts rel. webpage
TADT 1 User prev. visit. webpage with adult content
TBUS 1 User prev. visit. business rel. webpage
TCMP 1 User prev. visit. compute rel. webpage
TGMS 1 User prev. visit. games rel. webpage
THEA 1 User prev. visit. health rel. webpage
THOM 1 User prev. visit. home rel. webpage
TKID 1 User prev. visit. kids / teens rel. webpage
TNWS 1 User prev. visit. news rel. webpage
TREC 1 User prev. visit. recreation rel. webpage
TREF 1 User prev. visit. reference rel. webpage
TREG 1 User prev. visit. webpage w. regional content
TSCI 1 User prev. visit. science rel. webpage
TSHP 1 User prev. visit. shopping rel. webpage
TCIN 1 User prev. visit. consumer inform. webpage
TSOC 1 User prev. visit. society rel. webpage
TSPT 1 User prev. visit. sports rel. webpage
TWLD 1 User prev. visit. world rel. webpage

Table 1: 33 Attributes used in our experiments. First letter
indicates (D)emographic, (A)ctivity or (T)opic related at-
tributes. Attributes marked (*) were not available in search
log data. Total number of bits = 38.

Questions about individual attributes. We first asked the
participants to classify the sensitivity of a set of attributes
on a Likert scale from 1 (not very sensitive) to 5 (highly
sensitive). The order of the questions was randomized. Fig-
ure 1 presents the results (see Table 1 for used acronyms).
As might be expected, the frequency of search engine usage
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Figure 1: Sensitivity of individual attributes (with 95% con-
fidence intervals).
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Figure 2: (a) Sensitivity of sharing location under different
levels of discretization. (b) Sensitivity of k-discriminability
levels (right). Plots show 95% confidence intervals.

(AFRQ), as well as very general topic interests, e.g., news
pages (TNWS), are considered to be of low sensitivity. We
found that preferences for sharing topical interests with a
service depended on the topic; participants showed signifi-
cantly greater sensitivity to sharing interest in health or soci-
ety related websites (THEA, TSOC) than in news or science-
related pages (TNWS, TSCI). The biggest “jump” in sensi-
tivity occurs between attributes ACLK, referring to sharing a
repeated visit to same website, and ACRY, referring to hav-
ing recently traveled internationally. Participants were most
sensitive to sharing whether they are at work when perform-
ing a query (AWHR).

Questions about identifiability. We also elicited pref-
erences about sharing personal data at different degrees
of precision and with different levels of identifiability.
First, we sought to identify changes in the sensitivity
associated with sharing personal data at increasingly higher
resolution. More specifically, we asked participants to
assess how sensitive they are to sharing their location at
the region, country, state, city, zip code, or address level
of precision. Figure 2(a) presents the mean sensitivity with
95% confidence intervals for this experiment. We also asked
the participants about how sensitive they would be if, in
spite of sharing the information, they would be guaranteed
to remain indistinguishable from at least k other people
(thereby eliciting preferences about k of k-anonymity). We
varied k among 1, 10, 100, 1,000, 10,000, 100,000 and 1
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Figure 3: Utility (a), cost (b), and net benefit (c) for an in-
creasing number of attributes selected in a greedy manner.

million. Figure 2(b) presents the results of this experiment.
The survey data revealed that the sensitivities of study
participants to sharing personal data depend significantly on
the granularity of the shared information.

Questions about utility. In addition to assessing the sen-
sitivity of sharing different kinds of personal information,
we asked the participants to assess the improvements they
would require in a service so as to be willing to share at-
tributes of different sensitivity levels. More specifically, we
asked: “How much would a search engine have to improve
its performance, such that you would be willing to share
information you consider to be of sensitivity x”. Hereby,
“improvement” was measured in the decrease of time re-
quired to obtain the desired result (e.g., 100% improvement
means getting results twice as fast). As response options,
we offered average improvements by 25%, 50%, 100%, as
well as immediately presenting the desired page 95% of
the time (which we valued as a speedup by a factor of 4).
We also allowed the participant the option of indicating that
they would never share information of a specified sensitivity
level. These responses, in conjunction with the earlier
sensitivity assessments, allowed us to establish sensitivity
as a common currency of utility and cost. We used this
currency in exploring the privacy and utility tradeoff with a
large-scale log of web search activity.

Search Log Data and Attributes
Using the preference data collected from the survey, we
performed experiments with a log containing 247,684
queries performed by 9,523 users over a period of 14
months between December 2005 and January 2007. The

data was obtained from users who had volunteered to
participate in a public Microsoft data sharing program
that would use information about their search activities to
enhance search. The data was filtered to include only those
queries which had been performed by at least 30 different
users, resulting in a total of 914 different queries. From the
search logs, we computed 28 different user / query specific
attributes (Table 1). In selecting our attributes, we chose
coarse discretizations; no attribute is represented by more
than 2 bits, and most attributes are binary.

The first set of attributes contains features extracted
from the search history data. For each query, we deter-
mine whether the same query has been performed before
(AQRY), and whether the searcher has visited the same
webpage (ACLK) before. The attribute AFRQ describes
whether the user performed at least one query each day.
We also log the top-level domain (ATLV), determined by
reverse DNS lookup of the query IP address, and used
only the domains .net, .com, .org and .edu. In addition, we
determined if a user had ever performed queries from at
least two different zip codes (AZIP), cities (ACTY) and
countries (ACRY), by performing reverse DNS lookup
of the query IP addresses. For each query, we also stored
whether the query was performed during working hours
(AWHR; between 7 am and 6 pm) and during workdays
(AWDY; Mon-Fri) or during a weekend (Sat, Sun).

We looked up all websites visited by the user during 2006
in the 16 top-level category of the Open Directory Project
directory (www.dmoz.org). For each category, we used a
binary attribute indicating whether the user had ever visited
a website in the category (acronyms for topics are indicated
with prefix T).

For demographic information, only location was available
in the search log data, accessible by via a reverse IP lookup.
We discretized the location obtained in this manner into
four broad regions (DREG).

Computing Utility and Cost
We evaluated utility and cost based on the empirical distri-
bution of the data. In order to avoid overfitting with sparse
data, we applied Dirichlet smoothing. In our experiments,
we used 1000 samples in order to estimate U(A) and I(A).

We first used the greedy algorithm to select increasing
numbers of attributes, maximizing the utility and ignoring
the cost. Figure 3(a) shows the greedy ordering (attributes
ATLV, THOM, ACTY, TGAM, TSPT, AQRY, ACLK,
AWDY, AWHR, TCIN, TADT, DREG, TKID, AFRQ) and
the achieved entropy reductions. The entropy reduction lev-
els off at roughly 1.9 bits. Figure 3 clearly indicates the
diminishing-returns property of click entropy reduction.

We also generated a greedy ordering of the attributes, in
order of minimum incremental cost. Figure 3(b) presents the
results of this experiment, using the maxprob cost metric.
As expected, the curve appears convex (apart from small
variations based in the sampling process). The cost initially
increases very slowly, but the growth accelerates as more at-
tributes are selected. This behavior empirically corroborates
the supermodularity assumption for the cost metric.
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Calibrating the Tradeoff with the Survey

We now employ scalarization as in Eq. (2) to trade off utility
of personalization with the cost associated with the sharing
of personal data. In order to do this, we need to choose
a particular tradeoff parameter λ. Instead of committing
to a single value of λ, we use LS to generate solutions
for increasing values of λ, and plot their utility and cost.
Figure 4(a) shows the tradeoff curve obtained from this
experiment. We can see that this curve exhibits a prominent
“knee;” for values 1 ≤ λ ≤ 10, small increases in the utility
lead to big increases in cost, and vice versa. Hence, at this
knee, one achieves near-maximal utility at near-minimum
cost, a finding we found to be encouraging.

To integrate peoples’ preferences in the analysis of the
tradeoff, we performed the following calibration procedure:
From the search log data, we determined how increasing
the resolution in a peoples’ locations would increase the
privacy cost. We varied the location granularity from region
(coarsest) to zip code (finest). For example, we computed
the values I({zip code}), I({city}), etc. from the data. We
compared these values with responses from the survey. As
explained above, we had assessed sensitivities of partic-
ipants about sharing their locations at different levels of
precision. Similarly, we asked them to assess the degree of
search performance enhancement required for them to share
attributes of a given sensitivity. With each level of improve-
ment, we associated a number of bits: A speed up by a factor
of x would require log2 x bits (i.e., doubling the search per-
formance would require 1 bit, etc.). We then concatenated
the mappings from location granularity to sensitivity, and
from sensitivity to utility (bits), and computed the median
number of bits required for sharing each location granularity.

We performed a linear regression analysis to align the
identifiability cost curve estimated from data with the curve
obtained from the survey. The least-squares alignment
is presented in Figure 4(b), and obtained for a value of
λ ≈ 5.12. Note that this value of λ maps exactly into the
sweet spot 1 ≤ λ ≤ 10 of the tradeoff curve of Figure 4(a).
Figure 3(c) presents the scalarized net benefit Fλ for
greedily chosen attributes after calibration.
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Optimizing the Utility-Privacy Tradeoff

Based on the calibration, our goal was to find a set of
attributes A maximizing the calibrated objective Fλ(A) ac-
cording to (2). We used LS to approximately solve this opti-
mization problem. The algorithm returns the solution TSPT,
AQRY, ATLV, AWHR, AFRQ, AWDY, TGMS, ACLK.

We also compared the optimized solution Aopt to various
heuristic solutions. For example, we compared it to the can-
didate solution Atopic where we select all topic interest at-
tributes (starting with T);Asearch including all search statis-
tics (ATLV, AWDY, AWHR, AFRQ); AIP , the entire IP ad-
dress orAIP2, the first two bytes of the IP address. Figure 5
presents the results of this comparison. The optimized so-
lution Aopt obtains the best score of 0.90, achieving a click
entropy reduction of ≈ 1.5. The search statistics Asearch

performs second best, with a score of 0.57, but achieving
a drastically lower utility of only 0.8. Perhaps surprisingly,
the collection of topic interests, Atopic results in a negative
total score of -1.73, achieving less utility than the optimized
solution. We believe that this is because knowledge of the
exact topic interest profile frequently suffices to uniquely
identify a searcher. As expected, the IP address (even the
first two bytes) is quite identifying in this data set, and hence
has very high cost. This experiment shows that the optimiza-
tion problem is non-trivial, and that the optimized solution
outperforms the choices made by the heuristic policies.



Summary and Conclusions
We presented a utility-theoretic approach to privacy in
online services that takes user preferences into considera-
tion. We focused on the use of the methods to optimize the
utility-privacy tradeoff in web search. We showed that utility
functions that quantify enhancements of search with the use
of personal data satisfy submodularity, a property captured
intuitively as diminishing returns with access to increasing
quantities of personal data. In contrast, we found that privacy
concerns can behave in a supermodular manner; the sensi-
tivity and the risk of identifiability accelerate with additional
data. Based on the submodular utility and supermodular cost
functions, we demonstrated how we can efficiently find a
provably near-optimal utility-privacy tradeoff. We evaluated
our methodology on a log of over twelve months of web
search data, calibrated with preferences assessed from a
survey of over 1400 people. We found that a significant
value of personalizing web search can be achieved using
only a small amount of information about users.

The insights and methods can be harnessed in a variety
of different ways in real-world systems, from their use to
guide overall designs of privacy policies to creating specific
personalization machinery that executes in real-time in on-
line services. The former includes the use offline analyses
to support decisions about the best ways to limit the log-
ging of users’ online activities. The latter includes methods
that make use of standing profiles of personal data that users
are comfortable with sharing and interactive systems that en-
gage users with session-based requests for personal data that
promises to best enhance the user’s acute experiences, given
goals and needs that are inferred in real time.

We believe that the principles and methods employed in
the utility-theoretic analysis of tradeoffs for web search have
applicability to the personalization of a broad variety of on-
line services. The results underscore the value of taking a
decision-theoretic approach to privacy, where we seek to
jointly understand the utility of personalization that can be
achieved via access to information about users, and the pref-
erences of users about the costs and benefits of selectively
sharing their personal data with online services.
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