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Abstract
Predictive models deployed in the real world may assign in-
correct labels to instances with high confidence. Such errors
or unknown unknowns are rooted in model incompleteness,
and typically arise because of the mismatch between training
data and the cases encountered at test time. As the models are
blind to such errors, input from an oracle is needed to iden-
tify these failures. In this paper, we formulate and address the
problem of informed discovery of unknown unknowns of any
given predictive model where unknown unknowns occur due
to systematic biases in the training data. We propose a model-
agnostic methodology which uses feedback from an oracle to
both identify unknown unknowns and to intelligently guide
the discovery. We employ a two-phase approach which first
organizes the data into multiple partitions based on the fea-
ture similarity of instances and the confidence scores assigned
by the predictive model, and then utilizes an explore-exploit
strategy for discovering unknown unknowns across these par-
titions. We demonstrate the efficacy of our framework by
varying the underlying causes of unknown unknowns across
various applications. To the best of our knowledge, this pa-
per presents the first algorithmic approach to the problem of
discovering unknown unknowns of predictive models.

Introduction
Predictive models are widely employed in a variety of do-
mains ranging from judiciary and health care to autonomous
driving. As we increasingly rely on these models for high-
stakes decisions, identifying and characterizing their unex-
pected failures in the open world is critical. We categorize
errors of a predictive model as: known unknowns and un-
known unknowns (Attenberg, Ipeirotis, and Provost 2015).
Known unknowns are those data points for which the model
makes low confidence predictions and errs. On the other
hand, unknown unknowns correspond to those points for
which the model is highly confident about its predictions
but is actually wrong. Since the model lacks awareness of
its unknown unknowns, approaches developed for address-
ing known unknowns (e.g., active learning (Settles 2009))
cannot be used for discovering unknown unknowns.

Unknown unknowns can arise when data that is used for
training a predictive model is not representative of the sam-
ples encountered at test time when the model is deployed.
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Figure 1: Unknown unknowns in an image classification
task. Training data comprised only of images of black dogs
and of white and brown cats. A predictive model trained on
this data incorrectly labels a white dog (test image) as a cat
with high confidence.

This mismatch could be a result of unmodeled biases in the
collection of training data or differences between the train
and test distributions due to temporal, spatial or other factors
such as a subtle shift in task definition. To illustrate, consider
an image classification task where the goal is to predict if a
given image corresponds to a cat or a dog (Figure 1). Let
us assume that the training data is comprised of images of
black dogs, and white and brown cats, and the feature set
includes details such as nose shape, presence or absence of
whiskers, color, and shape of the eyes. A predictive model
trained on such data might learn to make predictions solely
based on color despite the presence of other discriminative
features because color can perfectly separate the two classes
in the training data. However, during test time, such a model
would classify an image of a white dog as a cat with high
confidence. The images of white dogs are, therefore, un-
known unknowns with regard to such a predictive model.

We formulate and address the problem of informed dis-
covery of unknown unknowns of any given predictive model
when deployed in the wild. More specifically, we seek to
identify unknown unknowns which occur as a result of sys-
tematic biases in the training data. We formulate this as
an optimization problem where unknown unknowns are dis-
covered by querying an oracle for true labels of selected



instances under a fixed budget which limits the number of
queries to the oracle. The formulation assumes no knowl-
edge of the functional form or the associated training data of
the predictive model and treats it as a black box which out-
puts a label and a confidence score (or a proxy) for a given
data point. These choices are motivated by real-world sce-
narios in domains such as healthcare and judiciary, where
predictive models are being deployed in settings where end
users have no access to either the model details or the asso-
ciated training data (e.g., COMPAS risk assessment tool for
sentencing (Brennan, Dieterich, and Ehret 2009)). Identify-
ing the blind spots of predictive models in such high-stakes
settings is critical as undetected unknown unknowns can be
catastrophic. In criminal justice, biases and blindspots can
lead to the inappropriate sentencing or incarceration of peo-
ple charged with crimes or unintentional racial biases (Craw-
ford 2016). To the best of our knowledge, this is the first
work providing an algorithmic approach to addressing this
problem.

Developing an algorithmic solution for the discovery of
unknown unknowns introduces a number of challenges: 1)
Since unknown unknowns can occur in any portion of the
feature space, how do we develop strategies which can ef-
fectively and efficiently search the space? 2) As confidence
scores associated with model predictions are typically not
informative for identifying unknown unknowns, how can we
make use of the feedback from an oracle to guide the dis-
covery of unknown unknowns? 3) How can we effectively
manage the trade-off between searching in neighborhoods
where we previously found unknown unknowns and exam-
ining unexplored regions of the search space?

To address the problem at hand, we propose a two-step
approach which first partitions the test data such that in-
stances with similar feature values and confidence scores
assigned by the predictive model are grouped together, and
then employs an explore-exploit strategy for discovering un-
known unknowns across these partitions based on the feed-
back from an oracle. The first step, which we refer to as De-
scriptive Space Partitioning (DSP), is guided by an objective
function which encourages partitioning of the search space
such that instances within each partition are maximally sim-
ilar in terms of their feature values and confidence scores.
DSP also provides interpretable explanations of the gener-
ated partitions by associating a comprehensible and compact
description with each partition. As we later demonstrate in
our experimental results, these interpretable explanations are
very useful in understanding the properties of unknown un-
knowns discovered by our framework. We show that our ob-
jective is NP-hard and outline a greedy solution which is a
ln N approximation, where N is the number of data points
in the search space. The second step of our methodology
facilitates an effective exploration of the partitions gener-
ated by DSP while exploiting the feedback from an oracle.
We propose a multi-armed bandit algorithm, Bandit for Un-
known Unknowns (UUB), which exploits problem-specific
characteristics to efficiently discover unknown unknowns.

The proposed methodology builds on the intuition that un-
known unknowns occurring due to systematic biases are of-
ten concentrated in certain specific portions of the feature

space and do not occur randomly (Attenberg, Ipeirotis, and
Provost 2015). For instance, the example in Figure 1 illus-
trates a scenario where systematic biases in the training data
caused the predictive model to wrongly infer color as the dis-
tinguishing feature. Consequently, images following a spe-
cific pattern (i.e., all of the images of white dogs) turn out
to be unknown unknowns for the predictive model. Another
key assumption that is crucial to the design of effective algo-
rithmic solutions for the discovery of unknown unknowns is
that available evidential features are informative enough to
characterize different subsets of unknown unknowns. If such
features were not available in the data, it would not be pos-
sible to leverage the properties of previously discovered un-
known unknowns to find new ones. Consequently, learning
algorithms designed to discover unknown unknowns would
not be able to perform any better than blind search (no free
lunch theorem (Wolpert and Macready 1997)).

We empirically evaluate the proposed framework on the
task of discovering unknown unknowns occurring due to a
variety of factors such as biased training data and domain
adaptation across various diverse tasks, such as sentiment
classification, subjectivity detection, and image classifica-
tion. We experiment with a variety of base predictive mod-
els, ranging from decision trees to neural networks. The re-
sults demonstrate the effectiveness of the framework and its
constituent components for the discovery of unknown un-
knowns across different experimental conditions, providing
evidence that the method can be readily applied to discover
unknown unknowns in different real-world settings.

Problem Formulation
Given a black-box predictive modelM which takes as input
a data point x with features F = {f1, f2, · · · fL}, and re-
turns a class label c′ ∈ C and a confidence score s ∈ [0, 1],
our goal is to find the unknown unknowns ofMw.r.t a given
test setD using a limited number of queries,B, to the oracle,
and, more broadly, to maximize the utility associated with
the discovered unknown unknowns. The discovery process
is guided by a utility function, which not only incentivizes
the discovery of unknowns unknowns, but also accounts for
the costs associated with querying the oracle (e.g., monetary
and time costs of labeling in crowdsourcing). Recall that,
in this work, we focus on identifying unknown unknowns
arising due to systematic biases in the training data. It is im-
portant to note that our formulation not only treats the pre-
dictive model as a black-box but also assumes no knowledge
about the data used to train the predictive model.

Although our methodology is generic enough to find un-
known unknowns associated with all the classes in the data,
we formulate the problem for a particular class c, a critical
class, where false positives are costly and need to be dis-
covered (Elkan 2001). Based on the decisions of the system
designer regarding critical class c and confidence threshold
τ , our search space for unknown unknown discovery con-
stitutes all of those data points in D which are assigned the
critical class c by modelM with confidence higher than τ .

Our approach takes the following inputs: 1) A set of N
instances, X = {x1, x2 · · ·xN} ⊆ D, which were confi-
dently assigned to the critical class c by the modelM, and



the corresponding confidence scores, S = {s1, s2 · · · sN},
assigned to these points byM, 2) An oracle o which takes
as input a data point x and returns its true label o(x) as well
as the cost incurred to determine the true label of x, cost(x)
3) A budget B on the number of times the oracle can be
queried.

Our utility function, u(x(t)), for querying the label of
data point x(t) at the tth step of exploration is defined as:

u(x(t)) = 1{o(xt)6=c} − γ × cost(x(t)) (1)

where 1{o(xt)6=c} is an indicator function which returns
1 if x(t) is identified as an unknown unknown, and a 0
otherwise. cost(x(t)) ∈ [0, 1] is the cost incurred by the
oracle to determine the label of x(t). Both the indicator and
the cost functions in Equation 1 are initially unknown and
observed based on oracle’s feedback on x(t). γ ∈ [0, 1] is a
tradeoff parameter which can be provided by the end user.

Problem Statement: Find a sequence of B instances
{x(1), x(2) · · ·x(B)} ⊆ X for which the cumulative util-

ity
B∑
t=1

u(x(t)) is maximum.

Methodology
In this section, we present our two-step framework designed
to address the problem of informed discovery of unknown
unknowns which occur due to systematic biases in the train-
ing data. We begin this section by highlighting the assump-
tions required for our algorithmic solution to be effective:

1. Unknown unknowns arising due to biases in training data
typically occur in certain specific portions of the feature
space and not at random. For instance, in our image clas-
sification example, the systematic bias of not including
white dog images in the training data resulted in a specific
category of unknown unknowns which were all clumped
together in the feature space and followed a specific pat-
tern. Attenberg et. al. (Attenberg, Ipeirotis, and Provost
2015) observed this assumption to hold in practice and
leveraged human intuition to find systematic patterns of
unknown unknowns.

2. We also assume that the features available in the data
can effectively characterize different kinds of unknown
unknowns, but the biases in the training data prevented
the predictive model from leveraging these discriminating
features for prediction. If such features were not available
in the data, it would not be possible to utilize the char-
acteristics of previously discovered unknown unknowns
to find new ones. Consequently, no learning algorithm
would perform better than blind search if this assump-
tion did not hold (no free lunch theorem (Wolpert and
Macready 1997)).
Below we discuss our methodology in detail. First we

present Descriptive Space Partitioning (DSP), which in-
duces a similarity preserving partition on the set X . Then,
we present a novel multi-armed bandit algorithm, which we
refer to as Bandit for Unknown Unknowns (UUB), for sys-
tematically searching for unknown unknowns across these
partitions while leveraging feedback from an oracle.

Descriptive Space Partitioning
Our approach exploits the aforementioned intuition that
blind spots arising due to systematic biases in the data do
not occur at random, but are instead concentrated in specific
portions of the feature space. The first step of our approach,
DSP, partitions the instances in X such that instances which
are grouped together are similar to each other w.r.t the fea-
ture space F and were assigned similar confidence scores
by the model M. Partitioning X enables our bandit algo-
rithm, UUB, to discover regions with high concentrations of
unknown unknowns.

Algorithm 1 Greedy Algorithm for Partitioning
1: Input: Set of instances X , Confidence scores S, Patterns Q,

Metric functions {g1 · · · g5}, Weights λ
2: Procedure:
3: P = ∅, E = X
4: while E 6= ∅ do:
5:

p = arg max
q∈Q

|E ∩ covered by(q)|
g(q)

where

g(q) = λ1g1(q)− λ2g2(q) + λ3g3(q)− λ4g4(q) + λ5g5(q)

6: P = P ∪ p , Q = Q \ p , E = E \ covered by(p)
7: end while
8: return P

The intuition behind our partitioning approach is that two
instances a and a′ ∈ X are likely to be judged using a sim-
ilar logic by model M if they share similar feature values
and are assigned to the same class c with comparable confi-
dence scores byM. In such cases, if a is identified as an un-
known unknown, a′ is likely to be an unknown unknown as
well1. Based on this intuition, we propose an objective func-
tion which encourages grouping of instances in X that are
similar w.r.t the criteria outlined above, and facilitates sep-
aration of dissimilar instances. The proposed objective also
associates a concise, comprehensible description with each
partition, which is useful for understanding the exploration
behavior of our framework and the kinds of unknown un-
knowns ofM (details in the Experimental Evaluation Sec-
tion).

DSP takes as input a set of candidate patterns Q =
{q1, q2, · · · } where each qi is a conjunction of (feature, op-
erator, value) tuples where operator ∈ {=, 6=,≤, <,≥, >}.
Such patterns can be obtained by running an off-the-shelf
frequent pattern mining algorithm such as Apriori (Agrawal,
Srikant, and others 1994) on X . Each pattern covers a set of
one or more instances in S. For each pattern q, the set of
instances that satisfy q is represented by covered by(q), the
centroid of such instances is denoted by x̄q , and their mean
confidence score is s̄q .

The partitioning objective minimizes dissimilarities of in-
stances within each partition and maximizes them across

1Note that this is not always the case, as we will see in the next
section.



partitions. In particular, we define goodness of each pat-
tern q in Q as the combination of following metrics, where
d and d′ are standard distance measures defined over feature
vectors of instances and their confidence scores respectively:

Intra-partition feature distance:

g1(q) =
∑

{x∈X : x ∈ covered by(q)}

d(x, x̄q)

Inter-partition feature distance:

g2(q) =
∑

{x∈X : x ∈ covered by(q)}

∑
{q′∈Q: q′ 6=q}

d(x, x̄q′)

Intra-partition confidence score distance:

g3(q) =
∑

{si: xi∈X ∧xi ∈ covered by(q)}

d′(si, s̄q)

Inter-partition confidence score distance:

g4(q) =
∑

{si: xi∈X ∧
xi ∈ covered by(q)}

∑
{q′∈Q: q′ 6=q}

d′(si, s̄q′)

Pattern Length: g5(q) = size(q), the number of
(feature, operator, value) tuples in pattern q, included to
favor concise descriptions.

Given the sets of instances X , corresponding confidence
scores S, a collection of patterns Q, and weight vector λ
used to combine g1 through g5, our goal is to find a set of
patterns P ⊆ Q such that it covers all the points in X and
minimizes the following objective:

min
∑
q∈Q

fq(λ1g1(q)− λ2g2(q) + λ3g3(q)

−λ4g4(q) + λ5g5(q)) (2)

s.t.
∑

q: x∈covered by(q)

fq ≥ 1 ∀x ∈ X , where fq ∈ {0, 1}

∀q ∈ Q

where fq corresponds to an indicator variable associated
with pattern q which determines if the pattern q has been
added to the solution set (fq = 1) or not (fq = 0).

The aforementioned formulation is identical to that of
a weighted set cover problem which is NP-hard (Johnson
1974). It has been shown that a greedy solution provides a ln
N approximation to the weighted set cover problem (John-
son 1974; Feige 1998) where N is the size of search space.
Algorithm 1 applies a similar strategy which greedily se-
lects patterns with maximum coverage-to-weight ratio at
each step, thus resulting in a ln N approximation guaran-
tee. This process is repeated until no instance in X is left
uncovered. If an instance in X is covered by multiple parti-
tions, ties are broken by assigning it to a partition with the
closest centroid.

Our partitioning approach is inspired by a class of clus-
tering techniques commonly referred to as conceptual clus-
tering (Michalski and Stepp 1983; Fisher 1987) or de-
scriptive clustering (Weiss 2006; Li, Peng, and Wu 2008;
Kim, Rudin, and Shah 2014; Lakkaraju and Leskovec 2016).

Algorithm 2 Explore-Exploit Algorithm for Unknown Un-
knowns
1: Input:
2: Set of partitions (arms) {1, 2 · · ·K}, Oracle o, Budget B
3: Procedure:
4: for t from 1 to B do:
5: if t ≤ K then:
6: Choose arm At = t
7: else
8: Choose arm At = arg max

1≤i≤K
ūt(i) + bt(i)

9: end if
10: Sample an instance x(t) from partition pAt and query the

oracle for its true label
11: Observe true label of x(t) and the cost of querying the or-

acle and compute u(x(t)) using Equation (1).
12: end for

13: return
B∑

t=1

u(x(t))

We make the following contributions to this line of research:
We propose a novel objective function, whose components
have not been jointly considered before. In contrast to pre-
vious solutions which employ post processing techniques or
use Bayesian frameworks, we propose a simple, yet elegant
solution which offers theoretical guarantees.

Multi-armed Bandit for Unknown Unknowns
The output of the first step of our approach, DSP, is a set
of K partitions P = {p1, p2 · · · pK} such that each pj cor-
responds to a set of data points which are similar w.r.t the
feature space F and have been assigned similar confidence
scores by the modelM. The partitioning scheme, however,
does not guarantee that all data points in a partition share the
same characteristic of being unknown unknown (or not be-
ing unknown unknown). It is important to note that sharing
similar feature values and confidence scores does not ensure
that the data points in a partition are indistinguishable as far
as the model logic is concerned. This is due to the fact that
the modelM is a black-box and we do not actually observe
the underlying functional forms and/or feature importance
weights being used by M. Consequently, each partition
has an unobservable concentration of unknown unknown in-
stances. The goal of the second step of our approach is to
compute an exploration policy over the partitions generated
by DSP such that it maximizes the cumulative utility of the
discovery of unknown unknowns (as defined in the Problem
Formulation section).

We formalize this problem as a multi-armed bandit prob-
lem and propose an algorithm for deciding which partition
to query at each step (See Algorithm 2). In this formaliza-
tion, each partition pj corresponds to an arm j of the ban-
dit. At each step, the algorithm chooses a partition and then
randomly samples a data point from that partition without
replacement and queries its true label from the oracle. Since
querying the data point reveals whether it is an unknown un-
known, the point is excluded from future steps.

In the first K steps, the algorithm samples a point from
each partition. Then, at each step t, the exploration decisions



are guided by a combination of ūt(i), the empirical mean
utility (reward) of the partition i at time t, and bt(i), which
represents the uncertainty over the estimate of ūt(i).

Our problem setting has the characteristic that the ex-
pected utility of each arm is non-stationary; querying a data
point from a partition changes the concentration of unknown
unknowns in the partition and consequently changes the ex-
pected utility of that partition in future steps. Therefore, sta-
tionary MAB algorithms such as UCB (Auer, Cesa-Bianchi,
and Fischer 2002) are not suitable. A variant of UCB, dis-
counted UCB, addresses the non-stationary settings and can
be used as follows to compute ūt(i) and bt(i) (Garivier and
Moulines 2008).

ūt(i) =
1

Nt(ϑit, i)

t∑
j=1

ϑij,t u(x(j)) 1Aj=i

bt(i) =

√√√√√2 log
K∑
i=1

Nt(ϑit, i)

Nt(ϑit, i)
, Nt(ϑ

i
t, i) =

t∑
j=1

ϑij,t 1Aj=i

The main idea of discounted UCB is to weight recent ob-
servations more to account for the non-stationary nature of
the utility function. If ϑij,t denotes the discounting factor
applied at time t to the reward obtained from arm i at time
j < t, ϑij,t = γt−j in the case of discounted UCB, where
γ ∈ (0, 1). Garivier et. al. established a lower bound on the
regret in the presence of abrupt changes in the reward dis-
tributions of the arms and also showed that discounted UCB
matches this lower bound upto a logarithmic factor (Garivier
and Moulines 2008).

The discounting factor of discounted UCB is designed to
handle arbitrary changes in the utility distribution, whereas
the way the utility of a partition changes in our setting has a
certain structure: The utility estimate of arm i only changes
by a bounded quantity when the arm is queried. Using this
observation, we can customize the calculation of ϑij,t for our
setting and eliminate the need to set up the value of γ, which
affects the quality of decisions made by discounted UCB.
We compute ϑij,t as the ratio of the number of data points in
the partition i at time j to the number of data points in the
partition i at time t:

ϑij,t = (Ni −
t∑

l=1

1Al=i)
/

(Ni −
j∑

l=1

1Al=i) (3)

The value of ϑij,t is inversely proportional to the number of
pulls of arm i during the interval (j, t). ϑij,t is 1, if the arm i
is not pulled during this interval, indicating that the expected
utility of i remained unchanged. We refer to the version of
Algorithm 2 that uses the discounting factor specific to our
setting (Eqn. 3) as Bandit for Unknown Unknowns (UUB).

Experimental Evaluation
We now present details of the experimental evaluation of
constituent components of our framework as well as the en-
tire pipeline.

Datasets and Nature of Biases: We evaluate the perfor-
mance of our methodology across four different data sets
in which the underlying cause of unknown unknowns vary
from biases in training data to domain adaptation:
(1) Sentiment Snippets: A collection of 10K sentiment snip-
pets/sentences expressing opinions on various movies (Pang
and Lee 2005). Each snippet (sentence) corresponds to a
data point and is labeled as positive or negative. We split the
data equally into train and test sets. We then bias the training
data by randomly removing sub-groups of negative snippets
from it. We consider positive sentiment as the critical class
for this data.
(2) Subjectivity: A set of 10K subjective and objective snip-
pets extracted from Rotten Tomatoes webpages (Pang and
Lee 2004). We consider the objective class in this dataset
as the critical class, split the data equally into train and test
sets, and introduce bias in the same way as described above.
(3) Amazon Reviews: A random sample of 50K reviews of
books and electronics collected from Amazon (McAuley,
Pandey, and Leskovec 2015). We use this data set to study
unknown unknowns introduced by domain adaptation; we
train the predictive models on the electronics reviews and
then test them on the book reviews. Similar to the sentiment
snippets data set, the positive sentiment is the critical class.
(4) Image Data: A set of 25K cat and dog images (Kaggle
2013). We use this data set to assess whether our framework
can recognize unknown unknowns that occur when seman-
tically meaningful sub-groups are missing from the training
data. To this end, we split the data equally into train and test
and bias the training data such that it comprises only of im-
ages of dogs which are black, and cats which are not black.
We set the class label cat to be the critical class in our ex-
periments.
Experimental Setting: We use bag of words features to
train the predictive models for all of our textual data sets.
As the features for the images, we use super-pixels obtained
using the standard algorithms (Ribeiro, Singh, and Guestrin
2016). Images are represented with a feature vector com-
prising of 1’s and 0’s indicating the presence or absence of
the corresponding super pixels. We experiment with mul-
tiple predictive models: decision trees, SVMs, logistic re-
gression, random forests and neural network. Due to space
constraints, this section presents results for decision trees as
model M but detailed results for all the other models are
included in an online Appendix (Lakkaraju et al. 2016). We
set the threshold for confidence scores τ to 0.65 to construct
our search space X for each data set. We consider two set-
tings for the cost function (refer Eqn. 1): The cost is set to 1
for all instances (uniform cost) in the image dataset and it is
set to [(length(x)−minlength)/(maxlength−minlength)]
(variable cost) for all textual data. length(x) denotes the
number of words in a snippet (or review) x; minlength and
maxlength denote the minimum and maximum number of
words in any given snippet (or review). Note that these cost
functions are only available to the oracle. The tradeoff pa-
rameter γ is set to 0.2. The parameters of DSP {λ1, · · ·λ5}
are estimated by setting aside as a validation set 5% of the
test instances assigned to the critical class by the predictive
models. We search the parameter space using coordinate de-
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Figure 2: Evaluating partitioning strategies using entropy
(smaller values are better).

scent to find parameters which result in the minimum value
of the objective function defined in Eqn. 2. We set the bud-
get B to 20% of all the instances in the set X through out
our experiments. Further, the results presented for UUB are
all averaged across 100 runs.

Evaluating the Partitioning Scheme
The effectiveness of our framework relies on the notion that
our partitioning scheme, DSP, creates partitions such that
unknown unknowns are concentrated in a specific subset of
partitions as opposed to being evenly spread out across them.
If unknown unknowns are distributed evenly across all the
partitions, our bandit algorithm cannot perform better than a
strategy which randomly chooses a partition at each step of
the exploration process. We, therefore, measure the quality
of partitions created by DSP by measuring the entropy of
the distribution of unknown unknowns across the partitions
in P . For each partition p ∈ P , we count the number of
unknown unknowns, Up based on the true labels which are
only known to the oracle. We then compute entropy of P as
follows:

Entropy(P) = −
∑
p∈P

Up∑
p′∈P

Up′
log2(

Up∑
p′∈P

Up′
)

Smaller entropy values are desired as they indicate higher
concentrations of unknown unknowns in fewer partitions.

Figure 2 compares the entropy of the partitions generated
by DSP with clusters generated by k-means algorithms us-
ing only features in F (kmeans-features), only confidence
scores in S (kmeans-conf) and both (kmeans-both) by first
clustering using confidence scores and then using features.
The entropy values for DSP are consistently smaller com-
pared to alternative approaches using kmeans across all the
datasets. This can be explained by the fact that DSP jointly
optimizes inter and intra-partition distances over both fea-
tures and confidence scores. As shown in Figure 2, the en-
tropy values are much higher when k-means considers only
features or only confidence scores indicating the importance
of jointly reasoning about them.

We also compare the entropy values obtained for DSP as
well as other k-means based approaches to an upper bound
computed with random partitioning. For each of the algo-
rithms (DSP and other k-means based approaches), we de-
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Figure 3: (a) Evaluating the bandit framework on image
data, (b) Evaluating the complete pipeline on image data
(decision trees as predictive model).

signed a corresponding random partitioning scheme which
randomly re-assigns all the data points in the set X to parti-
tions while keeping the number of partitions and the number
of data points within each partition same as that of the cor-
responding algorithm. We observe that the entropy values
obtained for DSP and all the other baselines are consistently
smaller than those of the corresponding random partitioning
schemes. Also, the entropy values for DSP are about 32-
37% lower compared to its random counterpart across all of
the datasets.

Evaluating the Bandit Algorithm
We measure the performance of our multi-armed bandit al-
gorithm UUB in terms of a standard evaluation metric in the
MAB literature called cumulative regret. Cumulative regret
of a policy π is computed as the difference between the total
reward collected by an optimal policy π∗, which at each step
plays the arm with the highest expected utility (or reward)
and the total reward collected by the policy π. Small val-
ues of cumulative regret indicate better policies. The utility
function defined in Eqn. 1 determines the reward associated
with each instance.

We compare the performance of our algorithm, UUB,
with that of several baseline algorithms such as random,
greedy, ε-greedy strategies (Chapelle and Li 2011), UCB,
UCBf (Slivkins and Upfal 2008), sliding window and dis-
counted UCB (Garivier and Moulines 2008) for various val-
ues of the discounting factor γ = {0.2, 0.5, 0.8}. All algo-
rithms take as input the partitions created by DSP. Figure



Figure 4: Illustration of the methodology on image data.

3(a) shows the cumulative regret of each of these algorithms
on the image data set. Results for the other data sets can
be seen in the Appendix (Lakkaraju et al. 2016). The fig-
ure shows that UUB achieves the smallest cumulative regret
compared to other baselines on the image data set. Similarly,
UUB is the best performing algorithm on the sentiment snip-
pets and subjectivity snippets data sets, whereas discounted
UCB (γ = 0.5) achieves slightly smaller regret than UUB
on the Amazon reviews data set. The experiment also high-
lights a disadvantage of the discounted UCB algorithm as
its performance is sensitive to the choice of the discount-
ing factor γ, where as UUB is parameter free. Further, both
UCB and its variant UCBf which are designed for stationary
and slowly changing reward distributions respectively have
higher cumulative regret than UUB and discounted UCB in-
dicating that they are not as effective in our setting.

Evaluating the Overall Methodology
In the previous section, we compared the performance of
UUB to other bandit methods when they are given the same
data partitions to explore. In this section, we evaluate the
performance of our complete pipeline (DSP + UUB). Due
to the lack of existing baselines which address the problem
at hand, we compare the performance of our framework to
other end-to-end heuristic methods we devised as baselines.
Due to space constraints, we present results only for the im-
age dataset. Results for other data sets can be seen in the
Appendix (Lakkaraju et al. 2016).

We compare the cumulative regret of our framework
to that of a variety of baselines: 1) Random sampling:
Randomly select B instances from set X for querying the
oracle. 2) Least average similarity: For each instance in X ,
compute the average Euclidean distance w.r.t all the data
points in the training set and choose B instances with the
largest distance. 3) Least maximum similarity: Compute
minimum Euclidean distance of each instance in X from
the training set and choose B instances with the highest
distances. 4) Most uncertain: Rank the instances in X
in increasing order of the confidence scores assigned by

the model M and pick the top B instances. The least
average similarity and least maximum similarity baselines
are related to research on outlier detection (Chandola,
Banerjee, and Kumar 2007). Furthermore, the baseline
titled most uncertain is similar to the uncertainty sampling
query strategy used in active learning literature. Note
that the least average similarity and the least maximum
similarity baselines assume access to the data used to train
the predictive model unlike our framework which makes no
such assumptions. Figure 3(b) shows the cumulative regret
of our framework and the baselines for the image data. It
can be seen that UUB achieves the least cumulative regret
of all the strategies across all data sets. It is interesting to
note that the least average similarity and the least maximum
similarity approaches perform worse than UUB in spite
of having access to additional information in the form of
training data.

Qualitative Analysis Figure 4 presents an illustrative ex-
ample of how our methodology explores three of the par-
titions generated for the image data set. Our partitioning
framework associated the super pixels shown in the Figure
with each partition. Examining the super pixels reveals that
partitions 1, 2 and 3 correspond to the images of white chi-
huahuas (dog), white cats, and brown dogs respectively. The
plot shows the number of times the arms corresponding to
these partitions have been played by our bandit algorithm.
The figure shows that partition 2 is chosen fewer times com-
pared to partitions 1 and 3 — because white cat images are
part of the training data used by the predictive models and
there are not many unknown unknowns in this partition. On
the other hand, white and brown dogs are not part of the
training data and our bandit algorithm explores these parti-
tions often. Figure 4 also indicates that partition 1 was ex-
plored often during the initial plays but not later on. This is
because there were fewer data points in that partition and the
algorithm had exhausted all of them after a certain number
of plays.

Related Work
In this section, we review prior research relevant to the
discovery of unknown unknowns.

Unknown Unknowns The problem of model incom-
pleteness and the challenge of grappling with unknown
unknowns in the real world has been coming to the fore as a
critical topic in discussions about the utility of AI technolo-
gies (Horvitz 2008). Attenberg et. al. introduced the idea
of harnessing human input to identify unknown unknowns
but their studies left the task of exploration and discovery
completely to humans without any assistance (Attenberg,
Ipeirotis, and Provost 2015). In contrast, we propose an
algorithmic framework in which the role of the oracle is
simpler and more realistic: The oracle is only queried
for labels of selected instances chosen by our algorithmic
framework.

Dataset Shift A common cause of unknown unknowns is
dataset shift, which represents the mismatch between train-



ing and test distributions (Quionero-Candela et al. 2009;
Jiang and Zhai 2007). Multiple approaches have been
proposed to address dataset shift, including importance
weighting of training instances based on similarity to
test set (Shimodaira 2000), online learning of prediction
models (Cesa-Bianchi and Lugosi 2006), and learning
models robust to adversarial actions (Teo et al. 2007;
Graepel and Herbrich 2004; Decoste and Schölkopf 2002).
These approaches cannot be applied to our setting as they
make one or more of the following assumptions which limit
their applicability to real-world settings: 1) the model is not
a black box 2) the data used to train the predictive model is
accessible 3) the model can be adaptively retrained. Further,
the goal of this work is different as we study the problem
of discovering unknown unknowns of models which are
already deployed.

Active Learning Active learning techniques aim to build
highly accurate predictive models while requiring fewer
labeled instances. These approaches typically involve
querying an oracle for labels of certain selected instances
and utilizing the obtained labels to adaptively retrain the
predictive models (Settles 2009). Various query strate-
gies have been proposed to choose the instances to be
labeled (e.g., uncertainty sampling (Lewis and Gale 1994;
Settles 2009), query by committee (Seung, Opper, and Som-
polinsky 1992), expected model change (Settles, Craven,
and Ray 2008), expected error reduction (Zhu, Lafferty, and
Ghahramani 2003), expected variance reduction (Zhang and
Oles 2000)). Active learning frameworks were designed
to be employed during the learning phase of a predictive
model and are therefore not readily applicable to our setting
where the goal is to find blind spots of a black box model
which has already been deployed. Furthermore, query
strategies employed in active learning are guided towards
the discovery of known unknowns, utilizing information
from the predictive model to determine which instances
should be labeled by the oracle. These approaches are not
suitable for the discovery of unknown unknowns as the
model is not aware of unknown unknowns and it lacks
meaningful information towards their discovery.

Outlier Detection Outlier detection involves identifying in-
dividual data points (global outliers) or groups of data points
(collective outliers) which either do not conform to a tar-
get distribution or are dissimilar compared to majority of
the instances in the data (Han, Pei, and Kamber 2011;
Chandola, Banerjee, and Kumar 2007). Several parametric
approaches (Agarwal 2007; Abraham and Box 1979; Eskin
2000) were proposed to address the problem of outlier de-
tection. These methods made assumptions about the under-
lying data distribution, and characterized those points with
a smaller likelihood of being generated from the assumed
distribution, as outliers. Non-parametric approaches (Es-
kin 2000; Eskin et al. 2002; Fawcett and Provost 1997)
which made fewer assumptions about the distribution of the
data such as histogram based methods, distance and density
based methods were also proposed to address this problem.
Though unknown unknowns of any given predictive model

can be regarded as collective outliers w.r.t the data used to
train that model, the aforementioned approaches are not ap-
plicable to our setting as we assume no access to the training
data.

Discussion & Conclusions
We presented an algorithmic approach to discovering un-
known unknowns of predictive models. The approach as-
sumes no knowledge of the functional form or the associ-
ated training data of the predictive models, thus, allowing
the method to be used to build insights about the behavior of
deployed predictive models. In order to guide the discovery
of unknown unknowns, we partition the search space and
then use bandit algorithms to identify partitions with larger
concentrations of unknown unknowns. To this end, we pro-
pose novel algorithms both for partitioning the search space
as well as sifting through the generated partitions to discover
unknown unknowns.

We see several research directions ahead, including op-
portunities to employ alernate objective functions. For in-
stance, the budget B could be defined in terms of the total
cost of querying the oracle instead of the number of queries
to the oracle. Our method can also be extended to more
sophisticated settings where the utility of some types of un-
known unknowns decreases with time as sufficient examples
of the type are discovered (e.g., after informing the engineer-
ing team about the discovered problem). In many settings,
the oracle can be approximated via the acquisition of la-
bels from crowdworkers, and the labeling noise of the crowd
might be addressed by incorporating repeated labeling into
our framework.

The discovery of unknown unknowns can help system
designers when deploying predictive models in numerous
ways. The partitioning scheme that we have explored pro-
vides interpretable descriptions of each of the generated par-
titions. These descriptions could help a system designer
to readily understand the characteristics of the discovered
unknown unknowns and devise strategies to prevent errors
or recover from them (e.g., silencing the model when a
query falls into a particular partition where unknown un-
knowns were discovered previously). Discovered unknown
unknowns can further be used to retrain the predictive model
which in turn can recognize its mistakes and even correct
them.

Formal machinery that can shine light on limitations of
our models and systems will be critical in moving AI solu-
tions into the open world–especially for high-stakes, safety
critical applications. We hope that this work on an algo-
rithmic approach to identifying unknown unknowns in pre-
dictive models will stimulate additional research on incom-
pleteness in our models and systems.
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