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Although many investigators a�rm a desire to build reasoning systems that behave

consistently with the axiomatic basis de�ned by probability theory and utility theory,

limited resources for engineering and computation can make a complete normative anal-

ysis impossible. We attempt to move discussion beyond the debate over the scope of

problems that can be handled e�ectively to cases where it is clear that there are in-

su�cient computational resources to perform an analysis deemed as complete. Under

these conditions, we stress the importance of considering the expected costs and bene�ts

of applying alternative approximation procedures and heuristics for computation and

knowledge acquisition. We discuss how knowledge about the structure of user utility

can be used to control value tradeo�s for tailoring inference to alternative contexts.

We address the notion of real-time rationality, focusing on the application of knowledge

about the expected timewise-re�nement abilities of reasoning strategies to balance the

bene�ts of additional computation with the costs of acting with a partial result. We dis-

cuss the bene�ts of applying decision theory to control the solution of di�cult problems

given limitations and uncertainty in reasoning resources.

1 Introduction

Enthusiasm about the use of computation for decision support and automated control within high-

stakes domains such as medicine has stimulated interest in the construction of systems that behave

consistently with a coherent theory of rational beliefs and actions. Numerous investigators inter-

ested in the automation of uncertain reasoning have converged on the theoretical adequacy of the

decision-theoretic basis for rational action [11, 3, 17]. Recent discussions about computational ap-

proaches to reasoning with uncertainty have centered on the degree to which probability and utility

theory can handle inference problems of realistic complexity. Investigators have answered criticism

about the inadequate expressiveness of probability theory by pointing out that the normative basis

addresses consistent inference with measures of belief and preference, not issues surrounding the

formulation of problems [18]. Other researchers have shown that probability theory and utility

theory are logically equivalent to the satisfaction of a small set of intuitive properties [35, 18]. Still

others have responded to complaints of intractability by demonstrating techniques that can solve
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relatively complex real-world problems [29, 13].

In this paper, we move beyond discussions of the degree to which the theories of probability and

utility are able to solve real-world problems. We focus on situations where it is clear that insu�cient

resources prohibit the use of the normative basis for a complete analysis. That is, we are interested

in studying cases where normative reasoning is clearly inadequate because of pressing resource

limitations. We are concerned with rational strategies for handling such resource insu�ciencies. We

have been exploring resource constraints and the feasibility of normative approaches to knowledge

assessment, computation, and explanation under scarce resources [15, 14]. That is, we have sought

to apply the principles of normative rationality to reason about the solution of a base-level decision

problem.

We focus our attention on real-time decision making. Resource-constraint issues can be especially

salient in the context of real-time requirements. In the real world, delaying an action is often costly.

Thus, computation about belief and action often incurs inference-related costs. The time required

by a reasoning system for inference varies depending on the complexity of the problem at hand.

Likewise, the costs associated with delayed action vary depending on the stakes and urgency of

the decision context. The real-time problem is further complicated by the existence of uncertainty

in the cost functions associated with delayed action. We are searching for uncertain-reasoning

strategies that can respond exibly to variations in the availability of resources. The intent of our

research is to develop coherent approaches to generating and selecting the most promising strategy

for particular problem-solving challenges.

Notions of bounded rationality that have been exercised in earlier discussion of intelligent systems

faced with complex problems shun a formal perspective as too costly [31, 23]. Most research on

reasoning and acting under resource constraints has focused on the discovery of relatively simple

satis�cing approaches to problem solving. These approaches may stray far from the levels of utility

that might be achieved through the pursuit of more sophisticated normative analyses. Losses

may be especially signi�cant in high-stakes decision making. Rather than reject the pursuit of a

theoretical foundation for ideal belief and action, we seek to extend coherently the principles of

normative rationality to situations of uncertain, varying, and scarce reasoning resources. Although

the research path may be fraught with challenging theoretical problems, potential bene�ts of the

work include the construction of artifacts that have greater expected value and the elucidation of

principles of reasoning under scarce resources.

2 Components of Uncertain Reasoning

We have found it useful to decompose uncertain reasoning into three components: problem for-

mulation, belief entailment, and decision making. Problem formulation is the task of modeling or

constructing the reasoning problem. This task often involves enumeration of relevant hypotheses

and dependencies among hypotheses. There are no formal theories for problem formulation; in

many machine-intelligence projects, engineers charge domain experts with the task of enumerating

all relevant propositions and of structuring the dependencies among the propositions. Belief entail-

ment or inference is the process of updating measures of truth assigned to alternative hypotheses

as new evidence is uncovered. In most schemes, the degree of truth or belief in the presence of

a hypothesis can range continuously between complete truth and complete falsity. Such belief-

entailment schemes include probability theory [18, 27], fuzzy logic [38], Dempster{Shafer theory

[30], and MYCIN certainty factors [2]. Finally, decision making is the process of selecting the best

action to take. A decision or action is an irrevocable allocation of valuable resources.

The classical decision-theoretic basis de�nes rational beliefs and actions with the axioms of prob-



ability theory and utility theory. Probability theory dictates that the assignment and entailment

of belief in the truth of propositions should be consistent with a parsimonious set of axioms. The

logical equivalence of these axioms with a small set of intuitive properties desired in a measure

of belief has been demonstrated [7, 18]. Utility theory [36] dictates the consistent assignment and

updating of the value of alternative actions given the values of alternative outcomes and the degrees

of belief in the outcomes. Measures of value consistent with the axioms of utility theory are called

utilities. Von Neumann and Morgenstern, the authors of utility theory, proved that agents making

decisions consistent with the axioms of utility would behave as though they associate utility values

with alternative outcomes and would act to maximize their expected utility [36].

The application of probability theory for belief assignment and utility theory for decision making

de�nes a normative basis for reasoning under uncertainty. The term normative refers to the notion

that probability theory and utility theory have been accepted in several disciplines as a consistent

axiomatic basis for inference that is considered optimal. That is, for many people, the normative

framework de�nes a rational theory for belief and action.

3 The Limited Scope of the Normative Basis

Arti�cial-intelligence research has highlighted the problems that lurk beyond the axiomatic frame-

work de�ned by probability and utility theory. The real-world problems examined by machine-

intelligence investigators are often more complex than were the problems previously tackled with

decision theory. In applying the normative basis to problems of real-world complexity, the limited

domain of discourse of the theory becomes apparent. It is clear that signi�cant aspects of problem

modeling and inference in the real world are absent from the language and axioms of the normative

basis. The normative theory's sole focus on the consistent assignment of measures of belief and

preference is dwarfed by the complex task of constructing and solving the uncertainty problem. For

example, the axioms have nothing to say about the modeling process. They do not address issues

surrounding the most appropriate propositions to represent, the level of abstraction to select, or

the degree of completeness or detail of interdependencies to represent.

The normative basis also does not address the most appropriate inference technique for reasoning

under speci�ed constraints in computational resources. Classical applications of normative ratio-

nality have implicitly assumed su�cient computational resources for reasoning about an optimal

action; the basis itself does not explicitly address issues surrounding the value of alternative ap-

proaches to generating partial solutions in reasoning systems that might be dominated by varying

limitations in computational or engineering resources.

There is much research to be done on reformulating problems and inference strategies deemed

optimal in a world with in�nite resources for performance in resource-limited environments. In

this regard, we see promise in the development of techniques for examining alternative models

and inference strategies as the objects of design- and real-time normative metalevel analysis. This

task involves determining, in a tractable fashion, the most promising expenditure of engineering or

computational resources. Our research has highlighted the notion that a system with the ability

to reason under uncertainty about complex real-world problems often requires extensive knowledge

about the domain at hand as well as knowledge about the expected behavior of alternative inference

strategies.



Dx

State

E1
E

n

V

Test

Eobs

Figure 1: A decision network representing a step in the sequential diagnosis problem.

4 The Complexity of Rational Inference

Let us pause briey to consider the complexity of normative rationality. Recent research has

focused on the computational complexity of probabilistic reasoning. The research has been based on

analyses of uncertain-reasoning problems represented with graphs. The most popular representation

uses directed graphs to represent explicitly conditional dependencies and independencies among

beliefs in propositions [28, 5, 27]. Many researchers have ascribed a common semantics to the

directed graphs. The representation is often called a belief network. In a belief network, an arc

between a node representing proposition A and another node representing proposition B expresses

knowledge that the probability distribution over the values of B depends on the speci�c values of

proposition A. If there is no arc from A to B, the probability distribution for B is not directly

dependent on the values of A. Less expressive representations commonly employed in arti�cial-

intelligence research have not allowed speci�c independencies to be represented e�ciently [12].1

Belief networks are special cases of more general graphical representations that can represent avail-

able actions and the utility of alternative outcomes in addition to beliefs [21, 29]. These graphs

have been called inuence diagrams and decision networks. An example of a portion of a simple

decision problem for medical diagnosis is shown in Figure 1. The node labeled Eobs represents

the current state of the observed evidence. The evidence in this case consists of symptoms that

are caused by the pathophysiologic state, represented by the node labeled State. The decisions are

represented by the square nodes labeled Dx and Test. The utility of the state of a�airs to a patient

is represented by the diamond-shaped value node, labeled V: In this case, the utility depends on

the actual disease present (State), the decision about additional testing (Test), and the decision

to assume a particular diagnosis (Dx). In the real world, there are frequently dependencies among

the observations and disease state, making this a complex inference problem.

Although the directed-graph representations allow the expression of inference problems that can

be solved e�ciently, many topologies have resisted tractable algorithmic solution. A troubling

topology is the multiply connected network [27]. Such inference problems belong to a class of

di�cult problems that have been shown to be NP-hard [6]. Problems in complex areas such as

medicine often require representation with multiply connected networks. Thus, in the worst case,

rational beliefs and actions demand computation that is exponential in the size of the problem.



It is clear that many uncertain-reasoning problems require more computation time than may be

available before a commitment to action is required. What can be done when the cost of inference

becomes intolerable? As a �rst step, investigators might search for special-case inference techniques

designed for the e�cient solution of speci�c problem types (e.g., speci�c belief-network topologies or

belief distributions). However, proofs, such as the one demonstrating the worst-case intractability

of multiply-connected networks, diminish hope that special methods will be discovered for solving

important classes of problems. For many situations, we will need to develop intelligent approxima-

tion procedures and heuristics that focus the expenditure of resources on the most relevant aspects

of the uncertain reasoning problem at hand.2

The pressures of complex decision making in real-time force Bayesian theoreticians and engineers

to consider alternatives to normative reasoning: Under time constraints (or other resource con-

straints, such as the cost of knowledge-acquisition), approximations and more poorly characterized

heuristic techniques often have a higher expected value than does complete normative reasoning.

The delay associated with inference might be so costly that an approximation method or heuristic

procedure might have a greater expected value, in spite of assured suboptimality or uncertainty

in the performance of the strategy. Thus, constraints in resource can transform a non-normative

technique into the \preferred choice" of devout Bayesians, and can convert the strictest formalists

into admirers of heuristics.

We have been investigating the problem of reasoning under speci�ed constraints within the Protos

project. A focus of this research addresses the use of decision theory for selecting among alternative

problem-formulation and inference strategies. We believe that the representation of explicit knowl-

edge about the costs associated with computation, such as time delay, will be useful in complex

uncertain reasoning problems. Although we hope to discover approximate inference techniques

that show clear dominance, we believe that it is often important to reason about inference tradeo�s

under uncertainty at the metalevel.

5 Inference under Resource Constraints

Simple normative reasoning systems have been constructed based on a single model constructed

as a static basis and acted on by a single inference strategy. We are interested in techniques

for reformulating a base problem into one that will be of greater value than a complete analysis

would be, given computational resource constraints. A reasoning system with knowledge about the

behavior of alternative approximation methods and heuristics, and about the costs associated with

inference-based delay, might provide valuable computation under resource constraints. A complete

normative analysis of the same problem might be a worthless or costly enterprise.

We shall now raise several issues about strategies that can focus computational attention on the

most relevant portions of uncertain reasoning problems. Challenging components of this research

include the development of approximation procedures and heuristics that are insensitive to small

variations in resource availability, the representation of knowledge about the value structure of the

problem, and the development of compiled and real-time control strategies that can recognize prob-

lems, understand the problem-solving context, and select or construct the most valuable inference

strategy.

5.1 Integration of Knowledge about Inference-Related Costs

Theoretical models of rationality must include the costs associated with rational inference itself.

We wish to include knowledge about the reasoner in the reasoning problem. The representation of



inference costs can be valuable in the control of inference. A crucial aspect of integrating knowledge

about real-world costs, bene�ts, and tradeo�s into a reasoning system is the acquisition of knowledge

about the value of important attributes of computer performance to the users of computer systems.

We have found it useful to decompose the value associated with computational inference into two

components. We assert that the application of an inference strategy is associated with some net

bene�t or cost to an agent{such as a system user, a robot, or a computational subsystem{that

relies on computation for decision making. We use the term comprehensive value of computation

Vc to refer to the expected utility associated with the application of a computational strategy. This

value is a function of the strategy, of the problem at hand, of the best default action in response

to the problem, and of the problem-solving context.

We view the comprehensive value as having two components: the object-related value and inference-

related value.3 The object-related value Vo is the expected utility associated with the best action or

result available to an agent, given a state of the world. In the computational setting, it is often useful

to reason about marginal increases in object-level value with computation. For example, changes in

the object-related value associated with the use of an expert system for assistance with a complex

medical diagnosis problem refers to the costs and bene�ts associated with the change in information

about the entities in the medical problem such as treatment alternatives, likelihoods of possible

outcomes, and costs of recommended tests. The inference-related value Vi is the expected disutility

intrinsically associated with computation, such as the cost a physician might attribute to the delay

of a decision because of the time required by an expert system to generate a recommendation, or the

cost associated with his inability to understand the rationale behind a machine's recommendation.

The net value of computation, �Vc, refers to the change in the comprehensive value, given some

quantity of computation. This is just the di�erence between the increase in object-level utility and

the cost of the additional computation.

Knowledge about costs and bene�ts of computation can be integrated into the decision-network

representation; the inuence-diagram representation is expressive enough to capture the base and

metalevel control problem. A more comprehensive representation of our simple diagnosis problem is

portrayed in Figure 2. We have added an inuence diagram capturing the uncertainty and possible

decisions regarding the control of reasoning in the object-level decision problem represented by

the original decision network. The metalevel control problem can make use of partial knowledge

about the performance of alternative strategies to choose the best procedure for solving the base

diagnosis problem. The arcs and nodes of the control problem represent knowledge about base-level

computation and autoepistemic knowledge about the costs of metareasoning. The traditional value

node from the base problem corresponds to the object-level utility Vo in the control network. The

metalevel reasoning problem is to optimize the comprehensive value Vc through considering the

object-level value in addition to the inference-related factors of time delay and deadlines. The node

Clarity indicates that the transparency and explainability of inference may be another important

dimension of inference-related cost in the context of an expert system [19, 16].

5.2 Multiple Attributes of Inference and Outcome

As indicated in Figure 2, the costs of reasoning may have several components. Multiple dimensions

of utility can be ascertained through consideration of attributes of outcomes and problem solving

that are important to a computational agent or system user. Such multiattribute utility can

be assessed through analysis of the values of possible scenarios. Frequently, a function can be

constructed that captures the relationships among attributes of computational value in important

contexts. The value assigned to alternative computational behaviors often can be described by a

qualitative or more detailed function that represents the relationships among important dimensions

of the perceived costs and bene�ts associated with alternative outcomes. Such value functions assign
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Figure 2: The addition of a decision network that represents costs, bene�ts, and decisions about

alternative approaches to solving the object-level diagnosis problem. The base problem and the

control network together represent a richer decision problem that includes knowledge about belief

and preferences regarding the problem-solving process itself.



a single utility measure to computation based on the status of a vector of attributes.

As an example, a planner attempting to maximize a robot's expected utility in a complex envi-

ronment will generally have to consider multiple components of value in computational goals. In

making decisions about its next set of goals, a robot may have to consider the distance and acces-

sibility of the essential staples of electrical power and oil, the positions of alternative crate-stacking

tasks, the speed with which it can create a new plan, and its distance from other robots that might

require or lend assistance. Similarly, the value associated with the use of a medical expert system

in a particular context might be a function of a number of attributes, including speed of computa-

tion, accuracy of recommendation, and clarity of explanation. We have been working with expert

physicians in the intensive-care and tissue-pathology domains to ascertain value models relating

measures of utility to multiple attributes of computation. There is almost always uncertainty in the

object-level state that results from the expenditure of resources. Thus, in the general case, we must

sum over a probability distribution of object-level attributes to generate an expected comprehensive

utility. In terms of net comprehensive utility,

�Vc =
X

~v
0

Vc(~v
0

; ~r
0

) p(~v
0

j~r
0

) � Vc(~v;~r)

where ~v and ~r, respectively, are the vectors of object-level and inference-related attributes without

additional computation, and ~v
0

and ~r
0

are the revised vectors, associated with additional compu-

tation.

5.3 Inference Tradeo�s

Computation in a world of bounded resources often is associated with cost/bene�t tradeo�s. With

a computational tradeo�, the bene�t associated with an increase in the quantity of one or more

desired attributes of computational value is intrinsically linked to costs incurred through changes

imposed on other attributes. More speci�cally, we de�ne a tradeo� as a relationship among two

attributes of utility, such as the immediacy and precision of a computational result, each having a

positive inuence on the perceived total value of computer performance, and each constrained to

be a monotonically decreasing function of the other over some relevant range. In the case of our

sample tradeo�,

PRECISION = F(IMMEDIACY ); to � IMMEDIACY � tn

where F is some monotonically decreasing function over the range bounded by computational time

delays to and tn. This de�nition can be generalized to the case where the value assigned to tuples of

a subset of relevant attributes is a monotonically decreasing function of tuples composed of other

attributes. The tradeo� between the immediacy and the precision or accuracy of a solution is

particularly explicit in methods that incrementally re�ne a computational result with time. Most

reasoning systems have been designed with implicit assumptions about the handling of inference

tradeo�s. The expected value of an automated reasoner's behavior, within dynamic environments,

might be greatly enhanced by endowing the system with the ability to tailor inference to a range

of problems and contexts.

5.4 Earlier Research

Protos research is pursuing the decision-theoretic control of computational problem solving. Work

is focused on the task of the rational control of decision-theoretic inference and of several sorting

and searching tasks. Related machine-intelligence research on the control of reasoning by Smith,



and by Treitel and Genesereth, has explored the usefulness of applying utility theory in the selection

of alternative logical reasoning strategies [32, 34]. Our work di�ers from the logic theorem-proving

work in its pursuit of theoretical tools for the control of computation under scarce resources, of

decision-theoretic inference under resource constraints, and of the structure of partial results and

multiple dimensions of utility.

Previous research in decision science has touched on the formal integration of the costs of reasoning

into decision-making inference. The earliest discussion of the explicit integration of the costs of

inference within the framework of normative rationality was introduced by Good [9], who made

the distinction between what he referred to as type I and type II rationality. Good de�ned type

I rationality as inference that is consistent with the axioms of decision theory without regard to

the cost of inference. Type II rationality is behavior that takes into consideration the costs of

reasoning. We carry out our work in the spirit of Good; that is, we seek a rational approach

to rational inference under scarce resources. Other related work in decision science centered on

the value of analysis. These studies have explored the likely bene�t of doing a decision analysis

or continuing to re�ne a decision. Matheson [24] explored the value of spending additional e�ort

to analyze a bidding problem proposed by Howard [20]. Watson and Brown [37] and Lindley

[22] describe issues surrounding the application of a preliminary decision analysis to assist in the

decision as to whether an individual should embark on a more costly decision analysis of the base

problem at hand.

6 Toward a Timewise-Re�nement Paradigm

Classical approaches to normative inference have pursued the determination of point probabilities.

In fact, the complexity proof described in Section 4 is based on the assumption that point proba-

bilities are required. The classical interest in calculating �nal answers permeates computer science.

Complexity theorists have focused almost exclusively on proving results about the time and space

resources that must be expended to run algorithms to termination [8, 1, 25]. In the real world,

strict limitations and variations on the time available for problem solving suggest that the focus on

time complexity for algorithmic termination is limited; analyses centering on how good a solution

can be found in the time available for computation are of importance.

The major rationale for dwelling on the time complexity of algorithmic termination resides in the

simplifying notion in algorithms research that a computer-generated result can be assigned only

one of two measures of utility: either a solution is found and is of value, or a solution is not found

and the result is therefore valueless. However, it is often possible to enumerate representations

and inference techniques that can provide partial solutions that have varying degrees of value. For

example, we could consider the value of di�erent types of partially sorted �les instead of dwelling

on our inability to always complete a sort under uncertain and varying time limitations [14].

An approach to developing techniques for optimizing the value of uncertain reasoning under ranging

resource limitations is the development of problem reformulation and inference schemes that allow

the generation and e�cient manipulation of partial results. We are interested in representation

and reasoning methods that allow a result to be re�ned with increasing amounts of computation.

In analyzing the timewise re�nement behavior of algorithms, it is crucial to consider knowledge

about the value structure of partial results. We believe that formalizing the costs and bene�ts, and

the cost{bene�t tradeo�s, associated with inference in di�ering contexts will be bene�cial in the

development of insights about useful approximations and heuristics.



6.1 Describing Resource Limitations

Before we discuss several properties of inference that are desirable for problem solving under

bounded resources, let us focus more closely on reasoning resources and resource availability. A

resource is some costly commodity required for inference, such as computation time or memory.

In addition, information that can be used to direct problem solving, or an object-level action, is

a reasoning resource. Decisions about resource expenditure span the dynamic allocation of time

and memory at runtime, as well as the costs, bene�ts, and amortization of design-time investments

in knowledge acquisition and hardware capabilities. We can consider any modi�able dimension

of hardware or problem-solving architecture as a resource that might be extended with some eco-

nomic expenditure. For example, a processor clock rate or an instruction set is a commodity that

might be enhanced. The discussion in this paper focuses on issues surrounding the dynamic alloc-

ation of scarce resources, given a prede�ned reasoning system. However, in the general case, we

must consider how longterm investments in hardware capabilities a�ect optimal resource allocation

strategies in the short term.

Although reasoning resource is generally a multiattribute vector, we focus here on computation

time. We de�ne the resource required by a computational agent to solve a problem completely,

using a reasoning strategy within the context of an agent's capabilities, as the complete resources

rc(S; P; �), where S is a reasoning strategy, P is a problem instance de�ned by a decision model

and context, and � is the background information about an agent's composition, capabilities, and

state of information.4 � includes an agent's hardware makeup, problem-solving architecture, and

knowledge about problem solving. We de�ne the object-related value associated with the complete

solution of a problem in a context C as the ideal object-related value, V �o (P;C). We term the

resource applied to solving a problem the allocated resources, ra. We refer to the ratio of the

allocated and complete resources as the resource fraction, rf(S; P; �). The resource fraction can be

a useful metric for reasoning about computation under bounded resources. We can use the notions of

resource fraction, comprehensive value, object-related value, and inference-related value to express

properties desired of inference within environments dominated by varying resource limitations.

6.2 Desiderata of Bounded-Resource Computation

What properties of inference are desirable for doing inference under uncertain challenges and scarce

computational resources? We seek representation and control strategies that con�gure knowledge

and processing in a manner that is e�ective in light of uncertainty in the amount of resources

available for computation. For example, we desire representation and inference methodologies that

allow the most relevant updating to occur early on. Also, as many real-world applications may

involve reasoning under variations in the amount of time available for inference, it is desirable to

design inference strategies that are insensitive to small ranges in resource fraction. We will now

focus on two classes of desiderata that are useful in reasoning under scarce resources.

6.2.1 Flexibility

The �rst desiderata address the desirability of a graceful response to diminishing resource levels.

These properties may be summarized with the concept of exibility. We use exibility in the

context of reasoning under scarce resources to refer to the ability to react gracefully to a range

of problems and resource availabilities. Flexible inference strategies are able to generate a wide

variety of custom-tailored responses. Flexible responses are an important dimension of intelligence.

They are crucial in planning for action under uncertainty. Flexible inference can be especially

useful in light of uncertain resource constraints. Uncertainty about problem solving plagues simple

agents immersed in complex, competitive environments; constraints on an agent's reasoning and

representation resources lead to uncertainties about the problems that may be faced and about



the performance of alternative reasoning strategies in solving the problems. Flexible strategies

allow limited agents to bene�t greatly by reacting robustly to challenges that may be only partially

characterized ahead of time. Several desired properties of exible computation are as follows:

� Value Continuity We desire the comprehensive value of computation, the object-related utility,

and the inference-related utility of a strategy to be continuous functions of the resource fraction as

that fraction ranges from zero to one. That is,

lim
rf!r

0

f

Vc(S; P; C; rf; �) = Vc(S; P; C; r
0

f; �)

where r
0

f > rf and Vc(S; P; C; rf; �) is the comprehensive value of computation associated with an

agent's applying inference strategy S to problem P in context C with resource fraction rf
5.

� Value Monotonicity We desire the object-related utility of a strategy to be a monotonically

increasing function of the resource fraction as that fraction ranges from zero to one. We refer to

the continuous decrease of object-related value with decreasing allocation of resource over ranges

that show a net positive value of computation as graceful degradation.

� Convergence We desire strategies that demonstrate convergence on the optimal object-related

value at some level of resource expenditure, rc(S; P; �),

lim
r!rc

Vo(S; P; C; rf; �) = V �o (P;C)

Strategies that show continuity and monotonicity are typically less e�cient for the complete solution

of a problem than a discontinuous strategy because of the overhead associated with the generation

of valuable partial results.

� Value Dominance We seek problem-solving strategies with value-dominant intervals over avail-

able quantities of resource within real-world problem-solving contexts. We de�ne value-dominant

intervals as ranges of resource fraction over which the gain in the comprehensive value of compu-

tation is a monotonically increasing function of resource.

6.2.2 Bounded Optimality

Another class of desiderata for systems reasoning under scarce resources addresses a desire for

rational control of reasoning and action. We use the term bounded optimality to refer to the

optimization of computational utility given a set of assumptions about expected problems and

constraints in reasoning resources. We can construct di�erent classes of bounded optimality and

pursue approximations to these de�nitions. We de�ne alternative types of bounded optimality by

making explicit assumptions about the nature of utility and about the composition and information

state, �, of a computational agent. For example, we may wish to pursue behavior that is bounded

optimal over some duration, considering the frequencies of di�erent problems. In this case, we

seek to optimize an agent's utility for some time frame in the context of a distribution of problem

challenges.

We note that bounded optimality may not be well de�ned for arbitrary problem-solving contexts.

Problems with the de�nition of bounded optimality include the di�culty of probing belief without

changing it,6 and the possible sensitivity of control decisions to inference at an arbitrary level

of metareasoning. For local optimization of utility in real-time, the discovery and con�rmation

of bounded optimality could add substantial computation costs, thereby decreasing the value of

the computed result. Thus, in the context of short-term optimization of utility within complex

environments, veri�cation of simple notions of bounded optimality will generally rely on partial

analyses at design-time.

The determination of true bounded optimality requires proving lower-bounds on the solution of

problems given the informational and computational constraints at hand. In the absence of theo-



retical limits, we can reason about the relative bounded optimality of agents limited to a distinct

set of reasoning strategies. This perspective is useful, given current research on the solution of

probabilistic-inference problems with alternative approximation strategies.

� Bounded Strategic Optimality We desire a reasoning system to apply strategies from its repertory

of strategies such that its expected utility is a maximum, given probability distributions over the

costs and bene�ts of applying alternative strategies. A tuple of strategies S should be selected such

that the agent's comprehensive value is maximized. That is,

S� = argmax
S

[max
r

Vc(S; P; C; r; �)]

Strategies available to an agent include that of ceasing computation and taking physical action. A

system seeking to satisfy bounded strategic optimality captures notions of limited rationality under

resource constraints in terms of a speci�c problem instance. Such a reasoner would attempt to

optimize the comprehensive value of its computation and physical activity, regardless of the method

lying at the foundations of its inference. We could modify the de�nition of strategic optimality

by adding additional constraints. For example, we might impose a bound on the proportion of

reasoning resources an agent could apply to real-time metalevel reasoning.

We can extend the local nature of bounded strategic optimality by considering the expected utility

associated with solving a distribution of problems, expected over a period of time. Such a perspec-

tive can be useful in comparing the e�ectiveness of agents, with di�erent compositions and abilities,

immersed in distinct problem contexts. For example, given a set of agents, an environment C, and

time horizon t, we may prefer the behavior of an agent, A�, where

A�(C; t) = argmax
A

nX

i=1

t fPi(C) � [Vd(A; Pi; C; �)+ �Vc(S
�[A; Pi; C; �])]

where fPi(C) is frequency of problem type Pi in context C; Vd is the expected value associated with

an agent taking it's best default action in response to a problem challenge; �Vc is the incremental

value of the best strategy available to the agent. This independent-challenge model, and other

de�nitions of agency preference, can be useful in reasoning about such factors as the relative

performance of di�erent agents in speci�c contexts, the value of learning in a domain, and the utility

of adding a new capability to an agent's problem-solving repertory. In the independent-challenge

model, we assume independence among problems, and consider the distribution of problems as

independent of the type of agent, and of the agent's abilities to solve problems. The description also

assumes that the utility assigned to the performance of an agent in solving a challenge is independent

of the time the challenge is posed. More detailed analyses include the representation of dependencies

among actions, problems, and utilities, and a consideration of the manner in which expenditures

and actions, made at di�erent times, are valuated. A comprehensive analysis of the net value of

an agent should additionally include terms capturing expenditures for the initial con�guration of

an agent's hardware, for ongoing hardware maintenance, and for knowledge acquisition. Finally,

in reasoning about the absolute utility gains derived from the use of a computational agent, it is

important to consider the decision-making policies that would be undertaken in the absence of the

agent.

7 Flexible Inference and Intelligent Control

Two promising areas of research on rationality under resource constraints are (1) the development

and characterization of intrinsically exible inference strategies, and (2) the mastery of techniques

and computational architectures for e�cient decision-theoretic control. The puruit of innovation



in both areas will highlight principles of bounded-optimal problem solving, and greatly facilitate

the development of robust autonomous agents and decision-support systems that are oriented to

human preferences.

7.1 Promising Probabilistic Inference Approaches

Several classes of approximation methods and heuristics are promising sources of useful strategies

for bounded-resource computation.

� Bound Calculation and Propagation There has been ongoing interest in the calculation of

upper and lower bounds on point probabilities of interest [5]. Probabilistic bounding techniques

determine bounds on probabilities through a logical analysis of constraints acquired from a partial

analysis. Bounds become tighter as additional constraints are brought into consideration. Cooper

has applied a best-�rst search algorithm to focus attention on the most relevant aspects of the

problem in calculating bounds on the hypotheses [5].

� Stochastic Simulation Simulation techniques are approximation strategies that report a proba-

bility distribution or partial characterization of a distribution over probabilities of interest through

a process of weighted random sampling [13, 26]. In many cases, the distribution over the prob-

abilities is approximated by the binomial distribution. The variance with which the distribution

converges on a probability with additional computation depends on the topology of the network,

and on the nature of the probabilistic dependencies within the network. Recent work has shown

current simulation algorithms to have intolerably slow convergence rates in many realistic cases [4]

. Stochastic simulation is nevertheless a promising class of inference for the derivation of useful

bounded-resource computation strategies.

� Completeness Modulation Completeness-modulation strategies center on techniques for reason-

ing about attributes of the uncertain-reasoning model to include in an analysis. Completeness

modulation can be used to simplify the topology of a belief network through deletion of classes of

dependencies. In one form of completeness modulation, arcs in the graph are assigned priorities by

heuristic measures of context-dependent \importance" that capture the bene�ts of including the

dependencies in alternative contexts. Such heuristic measures may be encoded during knowledge

acquisition. The measures allow a reasoning system dynamically to construct a model that will be

subjected to some inference procedure (e.g. bounding, simulation, complete normative analysis).

Under time constraints, a completeness-modulation approach can allow components of the problem

viewed as most important to be included in an analysis early-on. We have worked with experts to

acquire measures of importance on probabilistic dependency a medical domain.7 A long-standing

heuristic in reasoning under uncertainty involves the default assumption (or the imposition) of

conditional independence among propositions considered by a system. Speci�c dependencies are

included in an overwhelming independent model when they become salient. Such an assumption

greatly reduces the resources required for knowledge assessment and computation. Assumptions of

global independence have been made in many reasoning systems that have been deemed to perform

adequately (e.g., the MYCIN certainty-factor model [11, 17] and the early probabilistic diagnostic

programs [10, 33]). The actual costs and bene�ts of defaulting to conditional independence among

evidence in many real-world problems have not been determined. A promising area of research

is the prioritization of classes of dependencies and their inclusion in a model as computational

resource becomes available.

� Abstraction Modulation In many cases, it may be more useful to do normative inference on

a model that is deemed to be complete at a particular level of abstraction than it is to do an

approximate or heuristic analysis of a model that is too large to be analyzed under speci�c resource

constraints. It may prove useful in many cases to store several belief-network representations,



each containing propositions at di�erent levels of abstraction. In many domains, models at higher

levels of abstraction are more tractable. As the time available for computation decreases, network

modules of increasing abstraction can be employed.

� Local Reformulation Local reformulation is the modi�cation of speci�c troublesome topologies

in a belief network. Approximation methods and heuristics designed to modify the microstructure

of belief networks will undoubtedly be useful in the tractable solution of large uncertain-reasoning

problems. Such strategies might be best applied at knowledge-encoding time. An example of a

potentially useful local reformulation is the use of tractable prototypical dependency structures, such

as the noisy-OR structure [27]. The bene�ts of using such structures for knowledge acquisition and

inference could warrant the use of tractable prototypical dependencies in situations where the latter

are clearly only an approximation of more complex dependencies.

� Default Reasoning and Compilation Under severe time pressure, general default beliefs and

policies may have more expected value than does a computed result. Indeed, in some application

areas, it may be useful to focus a reasoning system's scope of expectation through the compilation

and e�cient indexing of computed advice for actions of great importance or of high frequency,

or that are needed in time-critical situations. The idle-time solution of problems, directed by

likelihood, importance, and criticality, can generate libraries of compiled belief and action. The

relative worth of storing heuristic default knowledge or precomputed beliefs and policies depends on

several factors, including the tractability of available inference strategies, the nature of the available

resource fraction, and the complexity of expected outcomes in the application area. Decisions about

whether to compute or to store recommendations may also be quite sensitive to the speci�c costs

of computer memory and knowledge assessment. Careful consideration of the value structure of

components of computation in real time and in system-engineering settings can help to elucidate

speci�c cases of such tradeo�s.

7.2 Decision-Theoretic Control

The di�erent categories of inference described in the preceding section highlight the notion that a

system may be able to choose among alternative strategies and strategy sequences to generate use-

ful bounded-resource solution strategies. The e�cient solution of complex problems under ranging

resource constraints will require management of the costs, bene�ts, and uncertainties associated

with applying portions of available reasoning resources to object and metalevel reasoning.8 Useful

conceptions of bounded optimality can be built with decision theory for decisions about reasoning

and computational resources in design-time, idle-time, and real-time settings. Beyond its use for

directing probabilistic inference, decision-theoretic control promises to be useful for optimizing the

value of a broad variety of computational tasks, such as sorting and searching. As control decision

making makes use of uncertain knowledge about problem solving, a number of interesting research

issues arise that relate to the acquisition and use of partial characterizations of performance. There

is much opportunity for developing automated techniques for learning and applying relevant infor-

mation about problem-solving performance. Other promising research focuses on the development

of methods for recognizing problems and for monitoring problem-solving progress.

We have found it useful in our work to simplify the task of controlling reasoning under bounded

resources by assuming di�erent prototypical classes of resource constraints within an application

area. Multiple inference approaches and representations of a problem can be devised, each tailored

for the long-term maximization of Vc in contexts with speci�c distributions of resources and chal-

lenges. We are currently studying the value of metalevel reasoners with access to several base-level

strategies and with rich control knowledge about the value of the strategies in di�erent problem

contexts. It appears useful to construct computational architectures that grant a control reasoner

easy access to separate knowledge bases, including a strategy base that contains information about
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Figure 3: (a) The timewise re�nement of the precision of a result with additional computation. (b)

The object-level utility of the re�ned result.

problem-solving performance along relevant dimensions of computation, a utility base that holds in-

formation about the construction of utility through combination of the dimensions of performance,

and a resource base that contains information about the costs of delay in prototypical resource

contexts.

8 Reasoning about the Time-Precision Tradeo�

We now demonstrate several of the concepts we have presented with an example. We focus on

the use of knowledge about multiple components of value at the metalevel to tailor inference to

the appropriate context. The example reects ongoing work on inference under bounded resources

[14]. Although the results can be derived formally, we shall describe the sample problem with a

set of qualitative curves for clarity. The curves capture important functional relationships among

components of computational value in alternative contexts.

Consider an inference problem from one of our application areas: An automated control system is

faced with a rapidly evolving set of respiratory symptoms in a patient in an intensive-care unit.

Assume that our system's action depends on p(CjE)|the probability of a condition C given the

observed symptoms E. In particular, this probability is important in deciding whether or not

the system will respond by advising that a patient be given a costly or dangerous treatment for

condition C.

What kinds of strategies might our autonomous pulmonary decision-making system employ to

respond rationally under pressing time constraints? Assume that the system has a base model

deemed during the construction of a system by a human expert to be an adequately complete model

of the relevant world. Figure 3(a) demonstrates the knowledge that the medical decision system

may have about the expected rate of computational re�nement of the precision of the requested

probability for a probabilistic bounding strategy, S1, given this type of problem. A measure of

precision could be the variance of the second-order distribution over the probability of interest.

This probability of interest is the number that would be generated given in�nite computation. In

the case of a probabilistic bounding scheme we might interpret the bounds as a uniform distribution

over the �nal probability.

Let us now introduce utility considerations. The assignment of value to computed partial results

of increased precision depends on the decision context; the value of an imprecise probability to

a user can range greatly, depending on the end use of the probabilistic information. A system

could be endowed with knowledge about the changes in expected value of perfect information with
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Figure 4: (a) The inference-related cost based in delay of action. (b) The comprehensive value of

computation. The maximum value of computation is reached at time tmax.

additional inference. To encode knowledge about the assignment of object-related value to partial

probabilistic results of di�erent precisions, we could work with an expert to assess the utility directly,

apply some preenumerated value function, or formally analyze the decision-making context. Let us

briey examine the last option.

Utility theory dictates that the object-related value (Vo) in this binary decision problem is deter-

mined by the probabilities and utilities of four possible outcomes: the patient either has or does not

have the condition, and the system will either treat or not treat for the condition. Simple algebraic

manipulation can be used to show that the optimal object-related value of information depends

on the costs associated with treating a person without the condition, the bene�ts of treating a

person with the condition, and the probability of the condition being present. Thus, changes in the

distribution over the actual probability of the pathophysiologic state can be assigned a measure of

value within the decision-theoretic framework.

Assume that our expert system has actively acquired information about the context in which the

desired probability will be used, and has characterized the object-related value of the probability of

the condition as a function of the precision of the reported probability. A plausible value function

for this situation is shown in Figure 3(b). The function demonstrates that the rate of re�nement

of the object-related value can vary greatly with increasing precision.

So far, we have examined only object-related value considerations. In the real world, time delay can

be quite costly. While we have been dwelling on issues surrounding the re�nement of the object-

related value, our patient has been gasping for breath. In this case, it is clear that, for any �xed

measure of object-related value, the comprehensive value of the result decreases with the amount

of time that a user must wait for that result to become available. It is thus important for a medical

decision system to have knowledge of the inference-related utility associated with computational

inference.

Let us assume that a physician with extensive knowledge about the realm of possibility in the

intensive-care unit had, at an earlier date, represented context-speci�c knowledge about the rate

at which the object-related value should be discounted with the passage of time. That is, utility

assessment at the time of knowledge engineering revealed that the expert physician's preferences

about the cost of delay in such a context could be represented as an independent multiplicative

discounting factor, Dt, ranging in value between one and zero with the passage of time. We have

considered this factor independent for simplicity of presentation; such a discount rate may depend

on the status of the probabilities and outcomes. In this example, we have framed inference-related

knowledge acquisition at the level of classes of criticality associated with unresolved pathophysiol-
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Figure 5: (a) The timewise re�nement of another inference strategy. (b) A comparision of the

comprehensive value of computation of the two inference strategies.

ogy. Thus, the object-related value is multiplied by the inference-related utility-discounting factor

to generate the net value of an answer as time passes. A function demonstrating such a degradation

of the utility of the analysis with time is shown in Figure 4(a).

If the information in the three functions is combined, the comprehensive value, Vc, of the computa-

tional process to a system user as a function of time can be derived. This result is displayed in

Figure 4(b). Notice that the comprehensive value has a global maximum Vcmax at a particular

time, tmax. This is the period of time the computer system should apply inference scheme S1 to

maximize the value to the patient of its reasoning. Although spending additional time on the prob-

lem will further increase the precision, the comprehensive value to the user will begin to decrease.

Integrating a consideration of the cost and bene�ts of computation into an analysis of probabilis-

tic inference makes it clear that the cost of computation can render the solution of the complete

problem inappropriate.

8.1 Metalevel Reasoning about Alternative Strategies

So far, we have considered characteristics of the computational value of only one reasoning strategy.

Assume that the system's metalevel reasoner has knowledge about the existence of another inference

strategy, S2, based on stochastic simulation. Assume further that the expected precision over time

of the second strategy is represented by the curve portrayed in Figure 5(a). Finally, assume that

the system has knowledge that, within this context, the strategy has a higher expected rate of

re�nement of precision early on, but a lower long-range rate of re�nement than that of stochastic

simulation.

If we apply the same object-value and inference-related functions presented previously to the new

inference strategy, we can derive a new comprehensive value function. This function is shown in

comparison to the previously derived comprehensive value function in Figure 5(b). Notice that

Vcmax(S1) > Vcmax(S2): A control strategy satisfying the bounded strategic optimality property

would select strategy S1 given all current knowledge about available probabilistic-inference strate-

gies and about the decision context at hand.

8.2 Contraction of the Decision Horizon

Now, suppose that the decision context has changed in a way that a�ects only the inference-

related cost function describing the discounting of object-related value with time. In the new

context, we have a much sharper discounting of the object-related value with time, as shown in
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Figure 6: (a) A contraction of the decision horizon. (b) A new dominance in a more time-critical

context.

Figure 6(a). Such a decreased decision horizon may be associated with situations requiring rapid

response, as might be the case when our patient suddenly begins to show signs of critically low

oxygenation. If we derive the comprehensive value functions for inference strategies S1 and S2 with

the new object-related value-discounting function, we see a new dominance. Figure 6(b) shows that

Vcmax(S2) > Vcmax(S1):That is, in contexts of greater time criticality, the value achieved by strategy

S2 will dominate that achieved by S1, and thus S2 will now be the strategy of choice.

8.3 Defaulting to Default Actions

We have dwelled on strategies that can provide partial results through computation. Before conclud-

ing, we shall move beyond uncertain inference to examine default reasoning. The default strategy

S3 is shown in Figure 7(a). As portrayed in the �gure, a default rule for a particular context often

can be made available with relatively little computation. For example, a set of default-action rules

could be e�ciently stored and indexed by propositions that determine the relevance of each rule.

Notice, in Figure 7(a), that the object-related value of the default strategy within a problem context

does not change with time; after being made available, the object-related value of a default strategy

is not re�ned with computation. In this case, we portray the maximum object-related value of the

default rule that would \�re" in the context at hand as being a fraction of the object-related value

attainable through computation.

A compiled policy with low object-related value could be the strategy of choice in situations of

extreme time criticality. For example, if our patient's blood pressure were suddenly to fall greatly,

a theoretically suboptimal \compiled" default strategy requiring little computation might dominate.

We depict graphs reecting this situation in Figure 7(c) and (d).

We have described the simple example of diagnosis under conditions of pressing time constraints to

demonstrate how a reasoning system can apply knowledge about the value of alternative strategies

to optimize the value of computation to a system user. The example demonstrates how normative

reasoning techniques might be applied to control reasoning to select the best strategy for solving

an inference problem under di�erent resource constraints.
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9 Summary

We reviewed several issues surrounding a normative approach to beliefs and actions under resource

constraints. We began the paper with a discussion of the limited scope of the normative basis for

reasoning under uncertainty in the real world. We described the application of knowledge about

inference-related costs in systems that reason under uncertainty, touching on the assignment of

measures of utility to multiple attributes of computation and the notion of computational trade-

o�s. After discussing properties capturing exibility and optimality desired in bounded-resource

inference, we presented classes of approximation procedures and heuristics that promise to be useful

in reasoning under resource constraints. Finally, we presented an example that is representative

of continuing investigation of the costs and bene�ts of alternative inference strategies in di�erent

settings. There is great opportunity for applying decision theory to make rational control decisions

based on uncertain knowledge about multiple dimensions of problem-solving performance. Assoc-

iated research problems include the design-time, idle-time, and real-time identi�cation of features of

problems that have relevance for problem-solving decisions; the automated discovery and represen-

tation of problem-solving performance; and the development of useful classes of bounded-optimal

problem solving. We believe that continuing research on principles of representation and control of

reasoning under conditions of varying computational and engineering resources will be crucial for

building systems that can act e�ectively in the real world.
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Notes

1For example, the popular rule-based representation may encourage researchers to make global

assumptions about the absence of dependencies among propositions.

2We use approximation to refer to strategies that generate results with a categorical margin of

error; we use heuristic to refer to strategies with ill-characterized or uncertain performance. A

strategy may be viewed as heuristic in terms of speci�c dimensions of its behavior. According

to the perspective of a heuristic as a strategy characterized by a probability distribution over its

performance on a set of problem instances, investigation, leading to new bounds on the behavior

of a strategy, can transform a heuristic method into an approximation strategy.

3In general, we may have to consider dependencies between the object- and inference-related value.

We assume a function f that relates Vc to Vo, Vi, and additional information about the problem-

speci�c dependencies that may exist between the two components of value|that is, Vc(�; �; ) =

f [Vo(�; ); Vi(�; )], where � and � represent parameters that inuence the object- and inference-

related utilities respectively, and  represents the parameters that inuence both the object- and

the inference-related utilities.

4All representations can be viewed as incomplete to some extent; we use complete to refer to

an object-related model perceived by a system designer to be an adequate representation of a

problem. Although a set of techniques for pruning models, referred to as sensitivity analysis, has

been elucidated, no formal techniques for verifying the completeness of models have been developed.

5
Value continuity may be generalized to bounded discontinuity, where some upper bound on an �



change in Vc is speci�ed for some � change in rf over ranges of resource fraction. The statement

of such constraints or of a probability distribution over such constraints can be used as a partial

characterization of heuristic strategies for important aspects of performance.

6The problem with the process of measurement or reection a�ecting the state of an agent's belief,

analogous to Heisenberg's uncertainty principle regarding the problem of measurement interfering

with the state of the measured physical phenomenon, arose in discussions with David Heckerman.

7An importance metric may also be useful in directing the allocation of resources during learning

and knowledge assessment.

8We seek theoretically sound means of determining the extent and level of metareasoning. However,

in many cases, empirically determined or heuristically assumed limits on metalevel e�ort will have

to be imposed; if not, an agent may be faced with the prospect of in�nite analytical regress.
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