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ABSTRACT
Background Data-driven risk stratification models built
using data from a single hospital often have a paucity of
training data. However, leveraging data from other
hospitals can be challenging owing to institutional
differences with patients and with data coding and capture.
Objective To investigate three approaches to learning
hospital-specific predictions about the risk of hospital-
associated infection with Clostridium difficile, and perform
a comparative analysis of the value of different ways of
using external data to enhance hospital-specific predictions.
Materials and methods We evaluated each approach
on 132 853 admissions from three hospitals, varying in size
and location. The first approach was a single-task
approach, in which only training data from the target
hospital (ie, the hospital for which the model was intended)
were used. The second used only data from the other two
hospitals. The third approach jointly incorporated data from
all hospitals while seeking a solution in the target space.
Results The relative performance of the three different
approaches was found to be sensitive to the hospital
selected as the target. However, incorporating data from all
hospitals consistently had the highest performance.
Discussion The results characterize the challenges and
opportunities that come with (1) using data or models from
collections of hospitals without adapting them to the site at
which the model will be used, and (2) using only local data
to build models for small institutions or rare events.
Conclusions We show how external data from other
hospitals can be successfully and efficiently incorporated
into hospital-specific models.

INTRODUCTION
The ability to learn an accurate model for predict-
ing patient outcomes at a specific hospital typically
hinges on the amount of training data available.
When ample data are available, it is often possible
to learn models that can accurately predict even
rare or infrequent events. However, institutions
with smaller numbers of patients cannot collect
enough data to construct useful models. Even
larger hospitals may not be able to collect sufficient
data about rare events.
According to the American Hospital Association

more than half of all hospitals registered in the
USA have fewer than 100 beds.1 An average length
of stay of 4.8 days2 results in fewer than 8000
admissions a year (this estimate assumes 100% cap-
acity and is therefore an upper bound). Given a
goal of learning models to predict rare events (eg,
an event occurring in <1% of the population), the
smaller institutions can collect no more than 80
positive training examples a year. In medicine,

where relationships between covariates and out-
comes are usually complex, 80 positive training
examples is usually too few to learn a predictive
model that can be generalized to new cases. Such
paucity of data makes it difficult to build hospital-
specific models. Global models, developed for
general use across multiple hospitals, have been
developed for some areas of medicine; statistical
models (and heuristic risk scores) have been devel-
oped and tested on data accessed from large
national registries (eg, the American College of
Surgeons National Surgical Quality Improvement
Program3). However, as suggested by Lee et al, 4

these models often perform poorly when applied
to specific institutions, because they do not take
into account institutional differences.
We investigate an approach to building predictive

models that involves augmenting data from individ-
ual hospitals with data from other hospitals.
Applying data from multiple hospitals to predictions
at a single target hospital presents an opportunity
for transfer learning—the leveraging of evidential
relationships in one or more related source ‘tasks’
for making predictions in a target task. Here, we
shall focus on the target task of predicting which
admissions to a specific hospital will result in a posi-
tive test result for toxigenic Clostridium difficile, a
challenging healthcare-associated infection. Labeled
datasets from other hospitals make up the source
tasks. We consider a set of three hospitals, all
belonging to the same hospital network. The data
collected at each hospital contain hospital-specific
distinctions —for example, the labels used to refer
to units and rooms within the hospital. Moreover,
the hospitals differ in the types of patients admitted.
These differences contribute to differences in sets of
observations or feature spaces that characterize rela-
tionships among observations and outcomes.
We explore three different solutions for building

predictive models for a specific institution, in the
context of using the base statistical methodology of
L2-regularized logistic regression. The methods
vary in the training data used and the details of the
evidential features considered. The results suggest
practical approaches to moving beyond a reliance
only on local data to build institution-specific
models for small institutions or rare events.

BACKGROUND AND SIGNIFICANCE
Transfer learning tackles the problem of leveraging
data from a related source task to improve perform-
ance on a target task. There are different flavors of
transfer learning depending on how the source and
target tasks differ and the distribution of labeled
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training data across source and target tasks. See Pan and Yang5

for a review of transfer learning.
Most of the studies performed in transfer learning have dealt

with differences in underlying distributions across tasks but often
assume that all of the data lie in the same observation or feature
space.4 6–10 In our problem formulation, the outcome of interest,
a C difficile infection, is the same across all tasks. However, the
datasets lie in distinct but overlapping feature spaces.

In previous work, Evgeniou and Pontil6 generalized
regularization-based methods from single-task to multi-task
learning. Their proposed solution was a natural extension of
existing kernel-based learning methods that builds on ideas from
hierarchical Bayesian modeling.7 8 They assumed a solution for
each predicted outcome (task) of the form wt ¼ w0 þ vt, where
w0 represents a common solution shared among all tasks and vt
represents the task-specific variation from the common solution.
Their method learns both common and task-specific compo-
nents simultaneously, but assumes that all data are sampled from
the same feature space.

Similar transfer learning approaches have been applied success-
fully to medical data.4 11 Lee et al explored transfer learning for
adapting surgical models to individual hospitals.4 Like us, and
others,12 they hypothesized that models learnt in a straightfor-
ward manner from pooled data fail to reflect individual variations
across hospitals. Their approach was two-step: using cost-
sensitive support vector machines, they first trained a model on
the source data and then learnt a model for the target data while
regularizing the model parameters towards that of the source
model. Their experiments showed a significant improvement
over other methods such as ones learnt only from target data or
from source data. However, their work assumed that there are no
missing data and that all of the data lie in an identical feature
space. The omission of hospital-specific features is typical in mul-
ticenter studies—for example that of Sugiyama et al.13 In reality,
transferring data across hospitals can be messy because many of
the observational variables, such as staff, protocol, and locations,
are hospital-specific. In ‘Experiments and results’, we show how
important these hospital-specific variables can be.

Researchers have investigated the task of transferring knowl-
edge across different feature spaces in other contexts. Bel et al14

explored the problems that arise when classifying documents in
different languages. Common solutions to this problem either
translate one document to the target language or map both docu-
ments to a language-independent feature space, analogous to
either mapping the source data into the target domain or
mapping both to a shared representation. Previous work has also
proposed approaches to translate auxiliary data into the target
space from one medium (eg, text) to another (eg, an image).15

Such translated learning applies to a different scenario than ours;
in translated learning there is no explicit correspondence
between the source feature space and the target feature space.

Several researchers have investigated transfer learning in the
context of linear classifiers.9 10 Previous work has explored
modifications to the support vector machine objective function
to include consideration of the loss associated with both target
and source data, but exclude the source data from either the
constraint or the set of support vectors. In comparison, we con-
sider methods based on L2-regularized logistic regression that
do not involve explicit modification of the objective function.

MATERIALS AND METHODS
Data and preprocessing
Our data come from three hospitals belonging to the MedStar
Health healthcare system. The institutional review board of the

Office of Research Integrity of the Medstar Health Research
Institute approved the statistical analysis of retrospective medical
records. We refer to the hospitals as hospital A, hospital B, and
hospital C. All three hospitals are described below.
▸ Hospital A: the smallest of the three hospitals. It has about

180 beds and sees just over 10 000 admissions a year.
▸ Hospital B: an acute care teaching hospital. It has about 250

beds and 15 000 inpatient visits a year.
▸ Hospital C: a major teaching and research hospital with over

900 beds and more than 40 000 inpatient visits a year.
Hospitals A and B are located in the same city only 10 miles

apart, whereas hospital C is located in a different city about 50
miles away. Despite the large differences in size and location,
hospital C overlaps with hospitals A and B in many of the ser-
vices provided. Table 1 describes the population of patients
admitted to each hospital over the same 2 years.

We are interested in risk-stratifying patients at the time of
admission based on their probability of testing positive for toxi-
genic C difficile during their hospital admission. The availability
of a well-calibrated prediction could enable proactive interven-
tion for patients at high risk of becoming infected. If a patient
tests positive for toxigenic C difficile at any time during his/her
admission, the admission is assigned a positive label (negative
otherwise). We consider all inpatient visits for the 2 years
between April 2011 and April 2013. This results in a total of

Table 1 Descriptive statistics comparing the study population
across the three different institutions

Hospital A (%)
(n=21 959)

Hospital B (%)
(n=29 315)

Hospital C (%)
(n=81 579)

Female gender 62.34 50.29 55.97
Age:
[0, 2) 14.38 0.00 9.00
[2, 10) 0.75 0.00 0.00
[10, 15) 0.80 0.07 0.00
[15, 25) 7.23 3.77 6.73
[25, 45) 21.27 15.46 19.05
[45, 60) 21.28 30.98 22.77
[60, 70) 13.16 21.19 16.78
[70, 80) 10.79 15.97 13.74
[80 100) 8.11 10.20 9.24
≥100 2.25 2.36 2.67

Hospital admission type:
Newborn 13.13 0.00 8.74
Term pregnancy 7.53 0.00 8.89
Routine elective 15.87 31.28 17.39
Urgent 7.53 7.84 11.26
Emergency 10.79 15.97 13.74

Hospital service:
Medicine 51.18 49.15 40.85
Orthopedics 5.61 18.76 1.54
Surgery 7.53 5.97 10.28
Obstetrics 13.97 0.00 10.09
Cardiology 0.00 2.99 11.36
Newborn 13.15 0.00 9.01
Psychiatry 0.00 13.11 3.70

Hemodialysis 3.06 5.32 6.76
Diabetic 24.44 32.73 33.59
Clostridium difficile 0.80 1.08 1.05
Previous visit in past
90 days

5.87 7.43 5.54

2 Wiens J, et al. J Am Med Inform Assoc 2014;0:1–8. doi:10.1136/amiajnl-2013-002162

Research and applications

 group.bmj.com on February 1, 2014 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://jamia.bmj.com/
http://group.bmj.com/
http://group.bmj.com/


132 853 admissions and 1348 positive cases of C difficile (see
table 2 for the distribution across hospitals).

Because we are interested in stratifying patients by risk at the
time of admission, we consider only data available at admission.
For admissions from all three hospitals, we extract observations
or features pertaining to the categories listed in table 3. We map
all features to binary-valued observations and remove variables
that do not occur in at least 1% of at least one hospital’s popu-
lation. This preprocessing results in 578 binary features: 256
shared by all three hospitals.

The remaining features are specific to either a single hospital
or shared by two hospitals. Figure 1 shows a labeling of the sets
of shared and specific features across the different hospitals.
Table 3 gives more detail about the types of features present
across the three different hospitals.

Risk stratification
To preserve interpretability, we consider learning in the context
of linear classifiers. We formulate the problem as follows.

We have N datasets:

Dj ¼ {(xji ; yji )jxji [ X j; yji [ {�1;1}}nji¼1

where j ¼ 0 . . .N� 1. D0 represents the target task and
D1; . . . ;DN�1 represent the source tasks. nj represents the
number of labeled examples available from each task. The
binary classification goal is the same for each task. However, we

must contend with different sets of variables, which we refer to
as feature spaces X0; . . . ;XN�1. We assume that there is some
overlap between the features spaces for each of the source tasks
and the target task under consideration, that is,
81 � i � N� 1;X0 >X i = ;. Figure 2 depicts the possible
intersection among feature spaces for a specific target task when
N ¼ 3.

In logistic regression, we seek a function f : Rd ! ½0; 1� of the
form:

f(xi) ¼ 1
1þ exp�(b0þwTxi )

ð1Þ

where w [ Rd (and x [ Rd). Solving for the regression coeffi-
cients w and b0 is a maximum likelihood estimation problem.
To improve generalizability, we consider L2-regularized logistic
regression, where l is a tuning parameter.

min
w

l

2
kwk2 þ

Xn
i¼1

logð1þ exp�yiw
TxiÞ ð2Þ

Table 2 The amount of available data varies significantly across
the three different institutions

Hospital Admissions (n) Clostridium difficile cases (n)

First year (Apr 2011–Apr 2012)
A 11 380 82
B 14 675 161
C 39 467 426

Second year (Apr 2012–Apr 2013)
A 10 579 94
B 14 640 157
C 42 112 428

The outcome we consider occurs in about 1% of the population, resulting in low
numbers of positive examples at smaller institutions.

Table 3 The variables considered can be grouped into the broad categories given here

Variable type
Set 1
A

Set 2
B

Set 3
C

Set 4
A, B, C

Set 5
A, B

Set 6
A, C

Set 7
B, C

Admission details* 2 2 3 28 0 4 4
Patient demographics† 2 0 0 52 1 0 5
Patient history‡ 0 0 0 19 0 0 0
Previous visit statistics (LOS) 0 0 0 20 0 0 0
Medications from previous visit 4 0 5 137 30 8 1
Home medications 0 0 95 0 0 0 0

Attending doctor identification number 27 30 12 0 0 0 0
Location units 10 14 62 0 0 0 1
Totals 45 46 177 256 31 12 11

Each column gives the number of features within a category pertaining to the feature subset (see figure 1).
*Includes complaint, source, hospital service, expected surgery, and month.
†Includes age, marital status, race, sex, city, and financial class.
‡Includes previous diagnoses (ICD9 codes), and history of Clostridium difficile.
LOS, length of stay.

Figure 1 The data for each hospital lie in a different feature space.
Here we give the amount of overlap among the different institutions.
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Note that we add an extra constant dimension to x and
compute the offset b0 implicitly. The solution to (2) depends on
the X and y employed in the training. Here we describe three
potential solutions:
▸ Target-only

This approach is a single-task approach and uses data only
from the target task (ie, D0Þ. This results in a solution of the
form w [ X0:This approach can easily overfit if the number of
training examples from the target task is small.
▸ Source-only

Given only labeled data from the source tasks, this approach
seeks a solution by exploiting the shared features of each of the
source tasks and the target tasks. The solution to this approach
lies in the union of the intersections of the target feature space
and each of the source features spaces (eg, regions 4, 5, and 6 in
figure 2). The solution is of the form ½wc; v1; v2; . . . ; vN�1�,
where wc represents the common features shared among all
tasks (ie, region 4 in figure 2), and 81 � i � N� 1; vi represents
the features shared only between the target and the source Di

(ie, regions 5 and 6 in figure 2). We rewrite the objective func-
tion in (2) to incorporate data from different sources. Here
source data are mapped to the common feature space shared
with the target task by removing all source-specific features.

min
wc ;v1 ;...;vN�1

lc
2
kwck2

þ
XN�1

j¼1

lj
2
kvjk2 þ

Xnj
i¼1

log (1þ exp�yji [wc ;vj ]Txji )

 !
ð3Þ

Because this solution depends on source data only, target-
specific features (eg, region 1 in figure 2) will have no effect on
the classification of a test patient.
▸ Source+Target

With Source+Target, we extend the solution described above
to incorporate the target data, and the target-specific features.

min
wc;v0 ;v1 ;...;vN�1

lc
2
kwck2þ

l0
2
kv0k2þ

Xn0
i¼1

log(1þexp�y0i [wc ;v0 ;...;vN�1]Tx0i )

þ
XN�1

j¼1

lj
2
kvjk2þ

Xnj
i¼1

log(1þexp�yji [wc;vj ]Txji )

 !

ð4Þ

This approach assumes a solution of the form [wc; v0; . . . ; vN�1]
where v0 pertains to target specific features. The final solution

[wc;v0; . . . ; vN�1] [ X0 as in the Target-only, approach but
incorporates data from all tasks.

Note that if 8j;l ¼ lc ¼ lj we can rewrite the objective func-
tion of (4) as:

min
wt

l

2
kwtk2 þ

Xn0þ...þnN�1

i¼1

logð1þ exp�yiw
T
t xiÞ ð5Þ

where wt¼[wc;v0;...;vN�1];y¼[y0;...;yN�1];X¼[X0;X00
1;...;X

00
N�1].

The target data are used in their original form while the source
data undergo two transformations. First, they are mapped to the
common feature space Xj!X

0
j (removing source-specific fea-

tures) and then mapped to the target feature space X
0
j!X

0 0
j (by

augmenting with zeros). Transforming the data in this way
renders the objective function analogous to (2). These target-
specific transformations to the data allow for transfer of knowl-
edge across hospitals.

EXPERIMENTS AND RESULTS
In this section we outline a series of experiments in which we
investigate the applicability of each of the learning approaches
described in the previous section. In each subsection we analyze
different aspects of the problem in order to gain insight into how
and when to transfer knowledge across hospitals (see table 4).

Including source data helps
Eventually, we will consider risk stratification for C difficile at
each of the three hospitals. To start, we consider the task of risk
stratification at the smallest hospital (ie, hospital A). So, hospital
A is our target task and hospital B and hospital C represent the
source tasks. We split the data for each hospital temporally into
data from the first year and data from the second year (see
table 2). In all of the experiments, we train on data from the
first year and test on data from the second year.

As described in ‘Risk stratification’, depending on the scenario
considered, the training set consists of all or only a subset of the
available training data. The dimensionality of the classifier

Figure 2 When N=3 the target feature space contains four different
sets of features: features common to all tasks, target-specific features,
and features shared only between the target and one of the sources.

Table 4 Outline of experiments presented in the remainder of this
section

Section
Training
data

Test
data Description

Including source
data helps

Target-only Target
hospital

Compares the three
approaches presented in the
previous section

Source-only
Target+Source

Target-specific
features are
important

Target-only Target
hospital

Measures the importance of
the target-specific features to
each target task. We keep
the training and test data
constant but vary the
dimensionality of the
solution (D1>D2>D3)

D=D1
d=D2
d=D3

More data are not
always better

Target-only Target
hospital

Measures the effect of
having a small amount of
data from the target task
versus twice as much data
from the source tasks

Source-only

Not all transfer is
equal

Source-only Target
hospital

Investigates the relative
contribution each source
(source 1 and source 2)
makes to the target task, by
considering each source
independently

Source 1
Source 2

All experiments are repeated three times such that each hospital is considered as the
target task.
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learnt depends on the origin of the training data. Both
Target-only and Source+Target approaches incorporate data
from the target task, so the dimensionality is that of the target
task. When data from the source tasks only (Source-only) are
used, the features that occur only at the target hospital (target-
specific) are ignored and the solution lies in a lower dimension
(see figure 2).

Using LIBLINEAR,16 we learn three different risk prediction
models based on the approaches described in the ‘Risk stratifica-
tion’ section. We apply each classifier to the same hold-out set
(data from the second year) from hospital A. We select hyper-
parameters using five-fold cross-validation on the training set. We
set the hyperparameters equal to one another, as in equation (5).
Although this assignment is not optimal, it makes training a
model more efficient, because otherwise optimization would
require a search over three dimensions to find l1; l2; andl3.

The results of this initial experiment are shown in figure 3A
and table 5 (denoted by Target Task ‘A’). The results give the
performance on the hold-out set in terms of the area under the
receiver operating characteristic (AUROC) curve, the area under
the precision recall curve, the breakeven point where preci-
sion=recall, and finally the OR (using a cutoff point based on
the 95th centile). We calculated the 95% CIs using bootstrap-
ping on the hold-out set. Comparing the performance of three
classifiers in figure 3A, we see that the classifier learnt solely on
data from the target task (ie, Target-only) performs the worst.
When data from hospitals B and C are included in the training
set, we see a significant improvement in performance. These

results demonstrate how auxiliary data can be used to augment
hospital-specific models. Hospital A has only 82 positive train-
ing examples, compared with hospitals B and C with a com-
bined 587 positive training examples. These additional positive
examples help the model generalize to new data.

In figure 3A, Source-only and Source+Target perform almost
identically. This might be because (1) the relatively small
amount of added data when training the Source+Target classi-
fier is not enough to have a significant influence on the perform-
ance, and/or (2) the target task (hospital A) does not differ
significantly from the source tasks (hospitals B and C).

To explore how the amount of available training data from
the target task affects the relative performance of the three
approaches, we repeat the experiment described above target
tasks B and C. The results of these additional experiments are
displayed in figures 3B,C and table 5.

Figure 3 shows how the relative performance of the three
approaches differs depending on the target task at hand. When
ample data from the target task are available (eg, target task C),
ignoring the target data can significantly hurt performance. This
result highlights the importance of including available target-
specific data when training a model.

Target-specific features are important
Across all three hospitals (ie, target tasks), we note that the
Source+Target approach performs at least as well as the best
classifier. The Source+Target approach jointly incorporates all
of the available training data and all of the features relevant to

Figure 3 Results of applying all three approaches to each of the target tasks. In each case the source data pertain to data from the other two
hospitals. AUROC, area under the receiver operating characteristic (curve).

Table 5 Result of applying the three approaches to each hospital, as described in Methods and Materials

Target task Approach No of training examples (positive) AUROC (95% CI) AUPR (95% CI) Breakeven Precision=Recall OR (95th centile)

A Target-only 11 380 (82) 0.7746 (0.74 to 0.82) 0.0379 (0.01 to 0.06) 0.0957 6.3886
Source-only 54 142 (587) 0.8242 (0.80 to 0.85) 0.0656 (0.02 to 0.10) 0.1383 9.8679
Source+Target 65 522 (669) 0.8239 (0.79 to 0.86) 0.0638 (0.03 to 0.09) 0.1489 9.3806

B Target-only 14 675 (161) 0.8110 (0.78 to 0.85) 0.0664 (0.04 to 0.09) 0.1274 11.3245
Source-only 50 847 (508) 0.7907 (0.75 to 0.82) 0.0557 (0.03 to 0.08) 0.1146 10.3604
Source+Target 65 522 (669) 0.8219 (0.80 to 0.85) 0.0699 (0.04 to 0.10) 0.1656 10.3604

C Target-only 39 467 (426) 0.8142 (0.80 to 0.83) 0.0526 (0.04 to 0.06) 0.0958 7.9779
Source-only 26 055 (243) 0.7428 (0.72 to 0.77) 0.0356 (0.03 to 0.04) 0.0818 6.0304
Source+Target 65 522 (669) 0.8114 (0.79 to 0.83) 0.0518 (0.04 to 0.06) 0.1051 8.9709

AUROC, area under the receiver operating characteristic; AUPR, area under the precision recall curve.
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the target task. In the next set of experiments, we measure how
the inclusion or exclusion of target-specific features affects clas-
sifier performance.

For each task, we learn three different classifiers on the same
training data but in different feature spaces. First, we train a
Target-only classifier, as in the previous experiments, using the
available target training data for each of the target tasks. Next,
we learn two additional Target-only classifiers but in a lower
dimensionality than with the first classifier. For example, con-
sider target task A, the first classifier (A1) learns a solution using
all of the features available to task A (ie, the union of sets 1, 4,
5, and 6 in figure 2), the second classifier (A2) ignores the
target-specific features (ie, it uses sets 4, 5, and 6), while the
final classifier (A3) considers only features common to all tasks
(ie, set 4). In doing so, we control for the amount of training
data and any changes in underlying distributions that could
influence performance on the hold-out data (eg, relationship
between the conditional or marginal distributions of the source
and target data). For the three classifiers, the training data and
test data are identical except for the set of features considered.

The results of this experiment are shown in figure 4. The
trend across all three tasks is the same, fewer features lead to
worse performance. The detrimental effect of removing the
target specific features is most noticeable for target task
C. Hospital C has 177 hospital-specific features not found at
the other two hospitals. Ignoring these target-specific features
leads to a significant drop in performance from an AUROC of
0.814 (95% CI 0.798 to 0.834) to an AUROC of 0.776 (95%
CI 0.755 to 0.795). The removal of the target-specific features
at the other two hospitals has less of an impact on performance.
For hospitals A and B there are fewer target-specific features (45
and 46 features, respectively) and fewer target-specific training
data. This might explain why there is no significant difference
between the AUROC achieved by the Source-only and Source
+Target approaches for these two target tasks (see table 5).

In a follow-up experiment, we learnt a single classifier by
pooling all of the data and searching for a solution in the
feature space common to all three tasks (ie, region 4 in figure
1). Applied to the hold-out data from task A, B, and C we
achieve an AUROC of 0.8178 (0.78 to 0.86), 0.7947 (0.76 to
0.84), and 0.7664 (0.74 to 0.79), respectively. This straightfor-
ward approach, ignores the target-specific features and as we
might expect results in a worse performance relative to the
Source+Target approach.

More data are not always better
In our next experiment we compare three different models for
each hospital (1) a Target-only model using a random sample of
5000 admissions, (2) a Target-only model at each hospital using
a random sample of 10 000 admissions, (3) a Source-only
model using a random sample of 5000 admissions from each of
the two hospitals. The average performance across 10 repeti-
tions is shown in figure 5.

For hospitals B and C having a small amount of data from the
target task is better than having twice as much data from the
source task. However, for hospital A the Source-only approach
does better than the Target-only approach despite the same
amount of training data. These two approaches seek solutions
in different feature spaces. The Target-only approach seeks a
solution in a higher dimensionality. This discrepancy in per-
formance could be for a combination of reasons (1) the source
data are a better approximation of what will happen during the
next year at hospital A and/or (2) the target-specific features for
hospital A are not informative.

Not all transfer is equal
When the results for target tasks A and B are compared, the
Source-only approach appears to work better for target task A
than it does for target task B. The amount of training data used
in training a classifier for hospital A is only slightly greater than
for hospital B (54 142 vs 50 847). This raises the question of
whether the discrepancy in performance is simply owing to the
effect of having 6.5% more data or owing to differences in the
underlying similarities between the source and target tasks. Data
from hospital C are included in the training data for both target
tasks, but it might be that data from hospital C transfer more
readily to target task A than to target task B.

Figure 4 Here the amount of training and test data are kept constant
but the dimensionality of the solution varies. AUROC, area under the
receiver operating characteristic
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To investigate this question, we apply the Source-only
approach to each of the three target tasks. However, instead of
combining data from the two available source hospitals we learn
a model for each source independently (while controlling for
the amount of training data) and apply it to the target task. The
results of this experiment are shown in figure 6. The source of
the training data are denoted along the x axis in figure 6. We
control for the amount of training data available at each hospital
by randomly undersampling data from the larger hospital.

These results suggest that data from hospital C might transfer
more readily to hospital A than data from hospital B, even
though hospital A and hospital B have more features in
common. This observation is supported by the last pair of bars
in figure 6: for target task C a classifier trained on data only
from hospital A outperforms a classifier trained on data only
from hospital B. This suggests that hospital B is the most differ-
ent of the three hospitals. This might explain why, despite the
large amount of training data, the Source-only approach per-
forms relatively poorly for target task B, but performs well for
target task A (see figures 3A,B). Additionally, as alluded to
earlier, these relationships might explain why the performance

of the Source-only and Source+Target approaches are almost
identical for target task A.

DISCUSSION AND CONCLUSION
In the previous section, our experiments were limited to three
hospitals (N=3). With over 5000 registered hospitals in the
USA alone, larger numbers of N are feasible. Opportunities for
scaling raise several important considerations and implications.
First, as N increases the number of features common to all hos-
pitals will shrink and therefore the number of hospital-specific
features will increase. Limiting models to only the shared
feature set (as in the study by Lee et al4) risks ignoring possibly
crucial hospital-specific information. Second, as N increases the
variation among hospitals will increase. Even for hospitals
within the same network, we found that the transferability of
knowledge was neither equal nor symmetric among hospitals.
As the variation among tasks increases, it is plausible that includ-
ing auxiliary data when training a model might actually diminish
performance on the target task. Future work is needed to inves-
tigate how to best select source data from a large pool of hos-
pital databases. Depending on the task, this could mean
selecting the best subset of hospitals, or the best subset of data
from each hospital. Third, as N increases the number of hyper-
parameters increases. Each hyperparameter controls the extent
to which data from each hospital contribute to the final model.
Procedures for identifying an optimal setting for hyperpara-
meters can quickly become inefficient with increasing N, posing
new challenges and opportunities in machine learning.

We note that many of the problems that arise when transfer-
ring knowledge across hospitals involve transferring knowledge
across time at an individual hospital. Over time, hospital popu-
lations, physical plants, tests, protocols and staff change.
Furthermore, electronic medical records change in the data col-
lected and the precise meanings of variables. Incorporating past
data into current models is an important future direction.

We have presented methods and experiments using data from
three hospitals to understand the potential gains and challenges
associated with leveraging data from external hospitals in build-
ing predictive models for C difficile infections. Although there is
no global model for the considered prediction task, the incon-
sistent performance of the Source-only approach across target
tasks indicates why national models often perform poorly when
applied to specific institutions.4 Auxiliary data tend to have the
greatest impact when the number of target training examples is
small, the number of shared features is large and there is signifi-
cant overlap in the shared feature space. When ample data from
the target space are available, our results demonstrate the
importance of including target-specific data and target-specific
features when training hospital-specific risk stratification
models. Our findings highlight the promise of leveraging exter-
nal data for building models at specific hospitals at which pre-
dictions will be used. We believe that further study of
techniques that facilitate the incorporation of all available data
across hospitals and databases should be a top priority in efforts
to construct and harness predictive models in healthcare.
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Figure 6 Here only data from a single source task are used to learn a
model, which is then applied to the target task. The ‘ indicates that the
amount of data used in training was limited to the amount of data
available from the other source. AUROC, area under the receiver
operating characteristic

Figure 5 The results of experiments from ‘More data are not always
better’, applied to each target hospital. AUROC, area under the receiver
operating characteristic
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