
Principles of Mixed-Initiative User Interfaces

Eric Horvitz
Microsoft Research

Redmond, WA 98025 USA
+1 425 936 2127

horvitz@microsoft.com

ABSTRACT
Recent debate has centered on the relative promise of
focusing user-interface research on developing new
metaphors and tools that enhance users’ abilities to directly
manipulate objects versus directing effort toward
developing interface agents that provide automation. In this
paper, we review principles that show promise for allowing
engineers to enhance human—computer interaction through
an elegant coupling of automated services with direct
manipulation. Key ideas will be highlighted in terms of the
LookOut system for scheduling and meeting management.

Keywords
Intelligent agents, direct manipulation, user modeling,
probability, decision theory, UI design

INTRODUCTION
There has been debate among researchers about where great
opportunities lay for innovating in the realm of human—
computer interaction [10]. One group of researchers has
expressed enthusiasm for the development and application
of new kinds of automated services, often referred to as
interface “agents.” The efforts of this group center on
building machinery for sensing a user’s activity and taking
automated actions [4,5,6,8,9]. Other researchers have
suggested that effort focused on automation might be better
expended on exploring new kinds of metaphors and
conventions that enhance a user’s ability to directly
manipulate interfaces to access information and invoke
services [1,13]. Innovations on both fronts have been fast
paced. However, there has been a tendency for a divergence
of interests and methodologies versus focused attempts to
leverage innovations in both arenas.

We have pursued principles that provide a foundation for
integrating research in direct manipulation with work on
interface agents. Our goal is to avoid focusing solely on one
tack or the other, but to seek valuable synergies between the
two areas of investigation. Surely, we should avoid
building complex reasoning machinery to patch
fundamentally poor designs and metaphors. Likewise, we

wish to avoid limiting designs for human–computer
interaction to direct manipulation when significant power
and efficiencies can be gained with automated reasoning.
There is great opportunity for designing innovative user
interfaces, and new human–computer interaction modalities
by considering, from the ground up, designs that take
advantage of the power of direct manipulation and
potentially valuable automated reasoning [2].

PRINCIPLES FOR MIXED-INITIATIVE UI
Key problems with the use of agents in interfaces include
poor guessing about the goals and needs of users,
inadequate consideration of the costs and benefits of
automated action, poor timing of action, and inadequate
attention to opportunities that allow a user to guide the
invocation of automated services and to refine potentially
suboptimal results of automated analyses. In particular,
little effort has been expended on designing for a mixed-
initiative approach to solving a user’s problems—where we
assume that intelligent services and users may often
collaborate efficiently to achieve the user’s goals.

Critical factors for the effective integration of automated
services with direct manipulation interfaces include:

(1) Developing significant value-added automation. It is
important to provide automated services that provide
genuine value over solutions attainable with direct
manipulation.

(2) Considering uncertainty about a user’s goals.
Computers are often uncertain about the goals and
current the focus of attention of a user. In many cases,
systems can benefit by employing machinery for
inferring and exploiting the uncertainty about a user’s
intentions and focus.

(3) Considering the status of a user’s attention in the
timing of services. The nature and timing of automated
services and alerts can be a critical factor in the costs
and benefits of actions. Agents should employ models
of the attention of users and consider the costs and
benefits of deferring action to a time when action will
be less distracting.

(4) Inferring ideal action in light of costs, benefits, and
uncertainties. Automated actions taken under
uncertainty in a user’s goals and attention are
associated with context-dependent costs and benefits.

The value of automated services can be enhanced by
guiding their invocation with a consideration of the
expected value of taking actions.

(5) Employing dialog to resolve key uncertainties. If a
system is uncertain about a user’s intentions, it should
be able to engage in an efficient dialog with the user,
considering the costs of potentially bothering a user
needlessly.

(6) Allowing efficient direct invocation and
termination. A system operating under uncertainty
will sometimes make poor decisions about invoking—
or not invoking—an automated service. The value of
agents providing automated services can be enhanced
by providing efficient means by which users can
directly invoke or terminate the automated services.

(7) Minimizing the cost of poor guesses about action
and timing. Designs for services and alerts should be
undertaken with an eye to minimizing the cost of poor
guesses, including appropriate timing out and natural
gestures for rejecting attempts at service.

(8) Scoping precision of service to match uncertainty,
variation in goals. We can enhance the value of
automation by giving agents the ability to gracefully
degrade the precision of service to match current
uncertainty. A preference for “doing less” but doing it
correctly under uncertainty can provide user’s with a
valuable advance towards a solution and minimize the
need for costly undoing or backtracking.

(9) Providing mechanisms for efficient agent−user
collaboration to refine results. We should design
agents with the assumption that users may often wish to
complete or refine an analysis provided by an agent.

(10) Employing socially appropriate behaviors for
agent−user interaction. An agent should be endowed
with tasteful default behaviors and courtesies that
match social expectations for a benevolent assistant.

(11) Maintaining working memory of recent
interactions. Systems should maintain a memory of
recent interactions with users and provide mechanisms
that allow users to make efficient and natural
references to objects and services included in “shared”
short-term experiences.

(12) Continuing to learn by observing. Automated
services should be endowed with the ability to continue
to become better at working with users by continuing to
learn about a user’s goals and needs.

A TESTBED FOR MIXED-INITIATIVE UI
The LookOut project has focused on investigating issues
with overlaying automated scheduling services on
Microsoft Outlook, a largely direct-manipulation based
messaging and scheduling system. LookOut automation
identifies new messages that are opened and brought to

focus and attempts to assist users with reviewing their
calendar and with composing appointments.

Value-Added Service: Calendaring and Scheduling
When invoked, LookOut parses the text in the body and
subject of an email message in focus and attempts to
identify a date and time of associated with an event implied
by the sender. The system then invokes Outlook’s
calendaring subsystem, brings up the user’s online
appointment book, and attempts to fill in relevant fields of
an appointment record. The system displays its guesses to
the user and allows the user to edit its guesses and to save
the final result.

LookOut’s scheduling analysis centers on a goal-specific
parsing of the text contained in the email message that has
focus. The system notes when a new message is being read,
or when a message comes into focus that has not yet been
analyzed. The system first establishes the date a message
was sent as an anchor date and attempts to normalize its
view based on the composition date. For example, if a
message was written yesterday and contains text referring to
scheduling a meeting for "tomorrow," the system will
understand that the message is referring to "today."

If LookOut cannot identify an implied date and time, the
system degrades its goal to identifying a span of time that is
most relevant given the text of the message (i.e., a specific
day, week, or month), and then displays a scoped view of
the calendar to the user. The user can directly manipulate
the proposed view and, if appropriate, go on to schedule
appointments manually.

LookOut has knowledge about typical patterns of
expression in email about meetings and times. Beyond
understanding the variety of ways that people refer to dates
and times, the system understands the temporal implications
of suggestions about information in email messages about
holding meetings at various times in the future (e.g.,
“sometime tomorrow,” “later in the week,” “next week,”
“within a couple of weeks,” “in May,” etc.), at prototypical
times during the day (e.g., “morning,” “afternoon,” and
“evening”), as well as during typical recurrent events (e.g.,
“at breakfast,” “grab lunch,” and “meet for dinner,” etc.).

LookOut analysis reduces the number of interactions and
complexity of navigation required of the user. Without
LookOut, users must navigate to the appropriate graphical
button or menu item to open their calendar, search for the
appropriate day, input the appropriate times and fill in the
subject of the meeting. LookOut performs this operation
automatically or via a single interaction, depending on the
modality selected. Even when LookOut guesses
incorrectly, the user is placed in an approximately correct
position in the calendar and can refine an approximate
guess about the implied appointment.

Decision Making Under Uncertainty
Users can directly invoke LookOut by clicking on an icon
that is always present on the system tray of the Microsoft

Windows shell. However, the system also works to
automatically identify a user’s goals by considering the
content of messages being reviewed. LookOut processes the
header, subject, and body of the message and, based on this
information, assigns a probability that a user would like to
view the calendar or schedule an appointment, by
employing a probabilistic classification system that is
trained by watching the user working with email. The
system makes decisions about appropriate actions as a
function of an inferred probability that the user has a goal
of performing scheduling and calendaring operations. In
particular, the inferred probability that service is desired is
used by LookOut to make a decision about whether to apply
a second phase of analysis that provides the user with
automated calendaring and scheduling.

Depending on the inferred probability—and on an
assessment of the expected costs and benefits of action—
the system decides to either (1) do nothing but simply wait
for continued direct manipulation of Outlook or manual
invocation of LookOut, (2) to engage the user in a dialog
about his or her intentions with regards to providing a
service, or (3) to go ahead and attempts to provide its
service by invoking its second phase of analysis.

Multiple Interaction Modalities
LookOut can be configured to be operated in a solely
manual modality or can be placed in one of several
automated-assistance modalities. In manual operation, the
system will only take action if a user clicks on the small
LookOut icon appearing in the system. When invoked,
LookOut analyzes the email message that has system focus.
Users can tell the system to display an alerting symbol (red
check mark) on the system-tray icon when LookOut would
have taken action if it had been in an automated-assistance
modality. By hovering the cursor over the icon on the
system tray, a summary of the intended action appears.
Figure 1 displays the direct invocation of LookOut. As
shown in the figure, a menu with dynamically populated
options pops up, letting the user schedule or organize a
meeting, or schedule from text on the system clipboard.

When placed in a basic automated-assistance mode,
LookOut works by launching and populating fields in
Outlook windows. In this mode, the system also employs
traditional dialog boxes to request additional information
from users when appropriate. LookOut can also operate in a
social-agent modality projecting an explicit social presence
in the form of animated characters, drawn from the MS
Agent social user-interface package. When in this mode, the
system issues queries to users and announces the results of
analyses with an anthropomorphic presence.

When LookOut is in the social-agent modality, it operates
in a handsfree manner, establishing an audio channel for
interacting with LookOut, further reducing mouse and
keyboard interaction with the Outlook system. In the
handsfree mode, the system employs a text-to-speech (TTS)

Figure 1. Manual invocation of LookOut. By hovering a
cursor over the LookOut icon, a user can examine
LookOut’s guess. By clicking on the LookOut icon on the
system tray, the user invokes the appointment service.

system and automated speech recognition system developed
by Microsoft Research to engage users in a natural dialog
about their intentions. If LookOut is confident enough in its
assessment of a user’s goals, a character appears and
mentions that it has readied a calendar view to show the
user or has created a tentative appointment before
displaying the results. At lower levels of confidence,
LookOut inquires about a user’s interest in either seeing the
calendar or scheduling an appointment, depending on the
system’s analysis of the message being viewed. After asking
the user, the system listens for an answer without requiring
additional keys or buttons to be pressed.

Figure 2 displays a sequence of screens demonstrating
LookOut’s operation within the social-agent modality.
After a message is analyzed behind the scenes, the system
decides it is worthwhile to engage the user in a dialog about
creating an appointment. An animated assistant appears
and engages the user with speech (a text balloon option is
turned on in this case to relay the content of the speech with
text). The user can indicate via speech that an appointment
is desired with one of several natural acknowledgments,
including “yes,” “yeah,” “sure,” “do it.” Given a go ahead,
LookOut creates an appointment and reviews it with the
user with text-to-speech, before evaporating, leaving the
result behind for refinement and saving. If the user had
expressed disinterest in going ahead with the appointment
by simply closing the message or by responding with a
variety of natural phrases including “no,” “not now,” “nah,”
and “go away,” the agent would have immediately nodded
to confirm an understanding and disappear.

LookOut dynamically scopes the calendar view to its best
guess, given uncertainty or indications about an appropriate
view from the message text. For the case captured in
Figure 3, LookOut cannot confidently identify a specific

time and day. Rather than making a poor guess, LookOut
brings up an appropriate week view on the user’s calendar.

Handling Invocation Failures
As LookOut is expressly continuing to reason under
uncertainty about the value of taking action, or engaging the
user in a dialog as messages are opened and closed, the
system can make guesses that simply turn out to be wrong.
If the LookOut system fails to automatically infer that users
wish to see their calendar or schedule an appointment, the
system can be directly invoked by clicking on the LookOut
icon on the system tray. If LookOut guesses that it is
worthwhile to engage the user in a dialog about scheduling
but the user is busy or disinterested in interacting with the
service, the system will pose a question, wait patiently for a
response, and then make a respectful, apologetic gesture
and evaporate. The amount of time the system waits before
timing out is a function of the inferred probability that a
user desires the service. Also, the system increases its dwell
on the desktop if it detects signs that the user is thinking,
including “hmmm…”, “uh…,” etc. The design of
LookOut’s behaviors for handling delays with responses
and for reacting to signs that service is being declined was
guided by the goal of giving LookOut the sensibility of an
intuitive, courteous butler, who might make potentially
valuable suggestions from time to time, but who is careful
to note when the user is simply too busy to even respond—
and to get out of the user’s way with minimal disturbance.

INFERRING BELIEFS ABOUT A USER’S GOALS
If we wish to assist users with potentially complex services,
it can be valuable to consider how such automation can be
provided effectively in light of the uncertainties agents may
have about users goals. Thus, developing machinery that
endows a system with the ability to explicitly assign
likelihoods to different feasible user intentions can be
critical in mixed-initiative systems. Such machinery can
extend from sets of rules linked to tables of probabilistic
information to more complex, real-time inference.

In related work in user modeling, probabilistic models of a
user’s goals have been employed to continue to perform
real-time inference about the probability of alternate
feasible goals as a function of observables including the
current program context, a user’s sequence of actions and
choice of words used in a query [4,6]. Some of this work
has leveraged recent successes in building and reasoning
with Bayesian network models [7,11].

LookOut leverages work in automated text classification for
making decisions about actions. Alternate text
classification methodologies were explored, including a
naïve Bayesian text classifier and text classification based
on the Support Vector Machine (SVM) analysis [3]. The
current version of LookOut assigns probabilities of user
intention by employing an SVM text classification based on
an efficient linear SVM approximation method developed
by Platt [12]. The method was coupled with a methodology

Figure 2. LookOut sequence showing its operation in its explicit social-agent modality. A new message (top left) is analyzed
and a decision is made to engage the user in a dialog (left). After receiving confirmation via speech input, the system creates
an appointment and presents its guess to the user for refinement (right).

Figure 3. Automated scoping of calendar. If LookOut
cannot establish a specific day and time, it attempts to
select a most appropriate span of time to display to the user
for review or refinement through direct manipulation.

for including custom-tailored, task-specific sets of text
features. Rather than employing text classification in the
classical manner for tasks such as labeling or categorizing
documents, we harness the methods for learning and
reasoning about the likelihood of user goals or tasks within
a context. For the assumed context of a user reviewing
email, we wish to assign a likelihood that an email message
that has just received the focus of attention is in the goal
category of “User will wish to schedule or review a
calendar for this email” versus the goal category of “User
will not wish to schedule or review a calendar for this
email” based on the content of the messages.

A linear SVM text classifier is built by training the system
on a set of messages that are calendar relevant and calendar
irrelevant. At runtime, for each email message being
reviewed, the linear SVM approximation procedure outputs
the likelihood that the user will wish to bring up a calendar
or schedule an appointment. The current version of
LookOut was trained initially on approximately 1000
messages, divided into 500 messages in the relevant and
500 irrelevant messages.

FROM BELIEFS TO ACTIONS
Given uncertainties about a user’s goals, what automated
actions should be taken? We shall consider the case of a
decision about whether or not to invoke the services
performed by an intelligent agent. From the perspective of
decision theory, decisions about action versus inaction
should be directed by expected utility. Autonomous actions
should be taken only when an agent believes that they will
have greater expected value than inaction for the user,

Table 1. Four outcomes considered in decisions about
whether to engage an intelligent agent to provide service.

taking into consideration the costs, benefits, and
uncertainties in the user’s goals.

Actions, Intentions, and Outcomes
Let us assume an agent has access to inference about the
likelihood of a user’s goals given observed evidence,
written p(G|E). In LookOut, the probability that a user
wishes to schedule is computed from evidence in patterns of
text contained in a message that has been recently opened
or brought to focus.

For decisions about action versus inaction, we must
consider four deterministic outcomes: Either the user
indeed has the goal being considered or does not have the
goal and, for each of these states of user intention, the
system either can take an action or not take the action. We
map a measure of the value associated with each outcome
to a utility on a zero to one scale, and define utilities as
follows:

• u(A,G): the utility of taking action A when goal G is
true

• u(A,¬G): the utility of taking action A when goal G is
not true

• u(¬A,G): the utility of not taking action A when goal G
is true

• u(¬A,¬G): the utility of not taking action A when goal
G is not true

These outcomes are summarized in Table 1.

The expected utility of taking autonomous action to assist
the user with an action given observed evidence, eu(A|E), is
computed by combining the utilities of the outcomes for the
case where the user desires service and does not desire a
service, weighted by the probability of each outcome, as
follows:

 eu(A|E)=p(G|E)u(A,G) + p(¬G|E) u(A,¬G) (1)

We can rewrite this equation in terms of p(G|E), by noting
that p(G|E)=1-p(¬G|E). Thus, the expected utility of
providing autonomous service is,

 eu(A|E)=p(G|E)u(A,G) + [1-p(G|E)] u(A,¬G) (2)

Figure 4. Graphical analysis of the expected utility of action
versus inaction, yielding a threshold probability for action.

1.00.0
p(G|E)

No Action

P*
u(A,¬G)

u(¬A,¬G)

u(¬A,G)

u(A,G)

Action

Desired Goal Not Desired

Action

No Action

u(A,¬G)

u(¬A,¬G)u(¬A,G)

u(A,G)

The expected utility of not taking autonomous action to
assist the user, u(¬A|E), is

 eu(¬A|E)=p(G|E)u(¬A,G) + [1-p(G|E)]u(¬A,¬G) (3)

We can visualize the implications of these equations by
plotting the expected utility as a function of probability.
Figure 4 displays a graph where the horizontal represents
the probability the user has a goal, ranging from zero to
one. The vertical axis indicates the expected value of the
system’s response. The two outcomes displayed on the right
vertical axis have an expected utility associated with
p(G|E)=1.0—the user indeed having the goal under
consideration. The outcomes listed on the left vertical axis
indicate the value of the outcomes when p(G|E)=0. The
expected value of acting for intermediary probabilities of
p(G|E), as dictated by Equation 2, is a line joining the two
deterministic outcomes associated with taking action. The
expected value of not acting as dictated by Equation 3 is a
similar line joining the two outcomes associated with
inaction.

Expected Utility and Thresholds for Agent Action
The lines representing expected utility cross at a specific
inferred probability of the user having a goal. At this
threshold probability, referred to as p*, the expected value
of action and inaction are equal. The best decision to make
at any value of p(G|E) is the action associated with the
greatest expected utility at that likelihood of the user having
the goal. By inspecting the graph, it is easy to see that it is
best for the system to take action if the probability of a goal
is greater than p* and to refrain from acting if the
probability is less than p*.

The threshold probability can be computed for any four
utilities by setting Equations 2 and 3 equal to one another
and solving for p(G|E). Given four utilities associated with
the four outcomes of interest, a system needs only to check
whether the probability of the goal is greater or less than
such a threshold probability to decide on whether it is in the
best interest of the user to invoke a service.

The threshold probability, p*, can be influenced by context-
dependent changes of the utilities associated with one or
more of the outcomes. For example, the utility, u(A,¬G),
associated with the situation where a system takes action
when a goal is not desired, can be significantly influenced
by the status of a user’s attention. The utility of unwanted
action can diminish significantly with increases in the depth
of a user’s focus on another task. Such a reduction in the
value of action leads to a higher probability threshold. In
contrast, the utility, u(A,¬G), associated with the situation
where a system takes action when a goal is not desired,
might be greater when more screen real estate is made
available. Increased screen real estate can diminish the
perceived cost of the needless operation of a scheduling
service that might bring up an appointment that obscures
items at a user’s focus of attention. As another example of

Figure 5. The result of increasing the value of taking
erroneous action. Context-dependent shifts in any of the
utilities can change the probability threshold for action.

a context-dependent outcome, the utility, u(¬A,G),
representing the situation where a system does not take
action when a user indeed has the goal, may decrease as a
user becomes more rushed. Diminishing the value of this
action reduces the threshold probability for action.

Figure 5 displays geometrically how p* can change with
context. In this case, increasing the utility (decreasing the
cost) of outcome u(A,¬G) of acting when service is not
desired leads to a lowering of the threshold probability that
must be crossed before action occurs.

Dialog as an Option for Action
Beyond reasoning about whether to act or not to assist a
user with an autonomous service, we can also consider the
action of asking users about their goals. We can integrate
action for dialog into the expected utility framework by
considering the expected value of asking the user a
question. We now consider the utility of two additional
outcomes: the case where an agent initiates dialog about a
goal and the user actually desires the goal under
consideration, u(D,G), and the case where the user does not
have the goal, u(D,¬G). We compute the expected utility of
performing dialog under uncertainty with an equation
analogous to Equation 3.

Figure 5 displays a graph with the addition of a line
representing the expected utility of engaging in a dialog. As
highlighted in the graph, the utility of engaging in a dialog
with a user when the user does not have the goal in question
is typically greater than the utility of performing an action
when the goal is not desired. However, the utility of asking
a user before performing a desired action is typically
smaller than the utility of simply performing a desired
action when the user indeed has the goal. In such
circumstances, if we follow the rule of selecting the option
with the greatest expected utility, we see that action can be
guided by two new threshold probabilities: the threshold
between inaction and dialog, p*¬A,D, and the threshold
between dialog and action, p*D,A. These two thresholds
provide an instant index into whether to act, to engage the

1.00.0
p(G|E)

No Action

u’(A,¬G)

u(¬A,¬G)

u(¬A,G)

u(A,G)

P*’

Action

Figure 6. Adding a second action option consisting of
dialog with users about their goals. In this case, the
graphical analysis higlights the origin of two threshold
probabilities for guiding the action of autonomous services.

user in a dialog about action, or to do nothing, depending
on the assessed likelihood of the user having a goal.

Systems for guiding autonomous service do not necessarily
need to perform explicit computations of expected value.
Thresholds can be directly assessed by designers or users.
Such directly assessed thresholds for action imply a deeper
implicitly assumed expected-utility model.

The LookOut system employs default utilities for guiding
dialog and action. However, the system also allows users to
specify the utilities for outcomes. Given a set of assessed
utilities, the system computes and uses modified threshold
probabilities. LookOut also allows users to simply specify
two key threshold probabilities for controlling dialog and
action. At run time, LookOut considers whether the inferred
probability that users desires service is above threshold for
dialog or action, versus being consistent with inaction.

USER ATTENTION AND THE TIMING OF SERVICE
Automated activity occurring before a user is ready or open
for the service can be distracting. On the other hand, delays
in the provision of service can diminish the value of
automation. We have found that the value of services and
alerts can be enhanced through building and applying
models of attention that consider the temporal pattern of a
user’s focus of attention.

Given the potential value of approaching users with dialog
or actions when users are most ready for a service, we
performed studies to identify the most appropriate timing of
messaging services as a function of the nature of the
message being reviewed by the user. We added
instrumentation to LookOut to monitor the length of time
between the review of messages and the manual invocation
of messaging services and collected data from several users
with a goal of building a default temporal-centric model of
attention. We identified a nonlinear relationship between
the size of the message being reviewed and the amount of
time users prefer to dwell on the content of the messages
before accepting automated calendaring and scheduling
operations. We found that the relationship between message

size and the preferred time for deferring offers of service
can be approximated by a sigmoid function as represented
by the sample data from a user displayed in Figure 7.
Continuing studies on timing within the LookOut project
are aimed at examining other factors that can explain dwell
time including ambiguity and complexity of dates and times
mentioned in the message.

In the general case, we can construct a model of attention
from such timing studies and make the utility of outcomes
time-dependent functions of message length. Alternatively,
we can use timing information separately to defer service
until a user is likely ready to receive it.

The current version of LookOut employs a predetermined
default automated-service timing model based on user
studies. However, the system can also be instructed to build
a custom-tailored timing model by watching a user
interacting with email. The system records the size of each
message being reviewed and the amount of time spent on
each message before scheduling operations are invoked and
stores cases when it is used in a user-directed manner.
When the system enters a learning mode, the system
performs a regression analysis on the data and fits a
piecewise linear model to the data. Alternatively, users can
tell the system to delay for a fixed amount of time before
the service is invoked.

MACHINERY FOR LIFE-LONG LEARNING
LookOut contains a pretrained probabilistic user model and
timing model. However, the system is designed to continue
to learn from users. Methods for embedding the capability
for life-long learning is a key challenge in Artificial
Intelligence research [14]. LookOut continues to store
messages as calendar relevant and irrelevant, by watching
the user working with email. If a calendar or scheduling
facility is invoked within a predetermined time horizon, the
system saves the message as schedule-relevant. The system
also continues to record the time users dwell on schedule-
relevant messages before invoking a calendaring operation.

User can specify a policy for continual learning. Users can
dictate a training schedule that guides the learning
component of the system periodically to incrementally
refine the probabilistic user model and time-based attention
model. The ongoing model continues to hone the models
used for guessing about the relevance of the automated
scheduling services as well as to become a better estimator
of the best time to invoke the services.

SUMMARY AND CONCLUSIONS

We reviewed key challenges and opportunities for building
mixed-initiative user interfaces—interfaces that enable
users and intelligent agents to collaborate efficiently. We
first presented a set of principles for designing mixed-
initiative user interfaces that address systematic problems
with the use of agents that may often have to guess about a
user’s needs. Then, we focused on methods for managing
the uncertainties that agents may have about users’ goals

1.0

1.0

0.0
p(G|E)

ActionNo Action

P*u(A,¬G)

u(¬A,¬G)

u(¬A,G)

u(A,G)

P*

Dialog

¬A,D D,A

u(D,¬G)

u(D,G)

Figure 7. Sigmoid fit on sample of data from a user
displaying the relationship between dwell time on schedule-
relevant messages and the quantity of text in the message
being reviewed.

the uncertainties that agents may have about users’ goals
and focus of attention. We discussed the consideration of
uncertainty, as well as the expected costs and benefits of
taking autonomous action in different situations. We
highlighted methods and design principles with examples
drawn from the LookOut system. Research on LookOut has
elucidated difficult challenges and promising opportunities
for improving human–computer interaction through the
elegant combination of reasoning machinery and direct
manipulation. We believe continuing efforts to address
problems with the design of mixed-initiative user interfaces
will likely yield fundamental enhancements in
human−computer interaction.

ACKNOWLEDGMENTS
Andy Jacobs has served as the primary software engineer
on the LookOut prototype. John Platt developed the linear
SVM text-classification methodology used in the current
version of LookOut. Mehran Sahami assisted with the early
studies of the use of Bayesian text classification for
identifying schedule-relevant messages. Jack Breese, Mary
Czerwinski, Susan Dumais, Bill Gates, Ken Hinckley, Dan
Ling, and Rick Rashid provided valuable feedback on this
research.

REFERENCES
1. Ahlberg, C., and Schneiderman, B. Visual information

seeking: Tight coupling of dynamic query filters with
starfield displays. Proceedings of CHI ’94 Human
Factors in Computing Systems (April 1994) ACM,
313-317.

2. Birnbaum, L., Horvitz, E., Kurlander, D., Lieberman,
H., Marks, J. Roth, S. Compelling Intelligent User
Interfaces: How Much AI? In Proceedings of the 1997
ACM International Conference on Intelligent
Interfaces (Orlando, FL, January 1996).

 http://www.merl.com/reports/TR96-28/index.html

3. Dumais, S. T., Platt, J., Heckerman, D., and Sahami,
M., Inductive learning algorithms and representations
for text categorization. Proceedings of CIKM98.
(Bethesda MD, November 1998). ACM Press, 148-155

4. Heckerman, D., and Horvitz, E. Inferring Informational
Goals from Free-Text Queries: A Bayesian Approach,
Fourteenth Conference on Uncertainty in Artificial
Intelligence (Madison WI, July 1998), Morgan
Kaufmann Publishers, 230-237.

 http://research.microsoft.com/~horvitz/aw.htm

5. Horvitz, E., and Barry, M. Display of Information for
Time-Critical Decision Making. Proceedings of the
Eleventh Conference on Uncertainty in Artificial
Intelligence (Montreal, August 1995). Morgan
Kaufmann Publishers, 296-305.

 http: //research.microsoft.com/~horvitz/vista.htm

6. Horvitz, E., Breese, J., Heckerman, D., Hovel, D.,
Rommelse, D. The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of
Software Users, Fourteenth Conference on Uncertainty
in Artificial Intelligence (Madison WI, July 1998).
Morgan Kaufmann Publishers, 256-265.

 http: //research.microsoft.com/~horvitz/lumiere.htm

7. Horvitz, E.J., Breese, J., and Henrion, M. Decision
theory in Expert Systems and Artificial Intelligence.
International Journal of Approximate Reasoning,
Special Issue on Uncertainty in Artificial Intelligence,
2:247-30.

 http: //research.microsoft.com/~horvitz/dt.htm

8. Lieberman, H., Letizia: An Agent That Assists Web
Browsing, International Joint Conference on Artificial
Intelligence (Montreal, August 1995). IJCAI.

9. Maes, P. Agents that Reduce Work and Information
Overload. Commun. ACM 37,7, 31-40

10. Maes, P., and Schneiderman, B., Direct Manipulation
vs. Interface Agents: A Debate. Interactions, Vol. IV
Number 6, ACM Press, 1997.

11. Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufmann
Publishers: San Francisco, 1991.

12. Platt, J. Fast training of SVMs using sequential
minimal optimization. To appear in: B. Scholkopf, C.
Burges, and A. Smola (Eds.) Advances in Kernel
Methods – Support Vector Learning, MIT Press, 1999.

13. Schneiderman, B. Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
ACM Press. 1992.

14. Selman, B. Brooks, R.A., Dean, T., Horvitz, E., M.
Mitchell, T., Nilsson, N.J. Challenge Problems for
Artificial Intelligence, In: Proceedings of AAAI-96,
Thirteenth National Conference on Artificial
Intelligence (Portland, OR, August 1996). AAAI Press,
1340-1345.

0

2

4

6

8

10

0 500 1000 1500 2000 2500

Length of message (bytes)

D
w

el
l b

ef
or

e
ac

tio
n

(s
ec

)

