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Abstract

Automated problem solving is viewed typically as the allocation of computational resources to
solve one or more problems passed to a reasoning system. In response to each problem received,
effort is applied in real time to generate a solution and problem solving ends when a solution is
rendered. We examine continual computation, reasoning policies that capture a broader conception
of problem by considering the proactive allocation of computational resources to potential future
challenges. We explore policies for allocating idle time for several settings and present applications
that highlight opportunities for harnessing continual computation in real-world tasks.  2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Research on inference and decision making under varying and uncertain resources has
focused largely on computational methods for addressing real-time challenges. An implicit
assumption in work on real-time problem solving is that reasoning begins when a problem
is submitted for analysis and ends when a solution is rendered or action is taken in the
world. Research on flexible, anytime procedures has extended the notion of termination
of problem solving from that of generating a precise result to a process of incremental
refinement. Nevertheless, flexible procedures have been studied primarily in the context of
solving challenges as they are encountered in real time.

We shall move beyond real-time reasoning in pursuit of principles of utility-directed
precomputation that we refer to as continual computation [40]. Continual computation
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generalizes the definition of problem to encompass the uncertain stream of challenges faced
over time. The methods bring attention to the potential value of developing machinery for
reasoning in an incessant, context-dependent manner to forecast and prepare for potential
future challenges [64].

There are compelling reasons for pursuing crisp policies for allocating idle resources
to future real-time computation. Today, computational systems are typically employed in
settings where relatively long spans of quiescence are pierced intermittently by bursts
of tasks. Periods of inactivity are common in computer systems that are sporadically
taxed to their limits when faced with real-time problem solving. At this moment, most
of the computational resources in the world are going unused. Unless you are reading this
document at some future date, when continual computation might be more ubiquitous,
large numbers of operating systems are currently cycling in idle loops, waiting passively
for the arrival of a real-time task.

The potential value of principles of continual computation for leveraging idle resources
is especially highlighted when considering the challenge of creating autonomous inference
and planning systems that are immersed in real-world environments, tasked with sensing
and acting over prolonged periods of time. Such situated systems may frequently be in
a resting state, but can expect to eventually face events and challenges that may lead to
real-time computational bottlenecks.

Research on continual computation comes in the spirit of a body of work, centering on
the value of optimizing the performance of reasoning and decision making under limited
resources [7,11,22,26,27,29,43,46,48,51,59,63,68]. The work also shares motivations and
goals with a variety of related efforts on compilation, precomputation, and prefetching in
Computer Science.

Policies for guiding the precomputation and caching of complete or partial solutions of
potential future problems are targeted at enhancing the expected value of future behavior.
The policies can be harnessed to allocate periods of time traditionally viewed as idle time
between problems, as well as to consider the value of redirecting resources that might
typically be allocated to solving a definite, current problem to the precomputation of
responses to potential future challenges under uncertainty.

Allocating idle resources to future problems is an intractable combinatorial optimization
problem. In the general case, a combinatorial number of alternative allocations and
sequences of precomputation effort must be explored and the best sequence selected, given
a probability distribution over idle time. Rather than pursue the use of general optimization
methods to allocate resources, we seek to elucidate principles of continual computation
that can be harnessed to compose in a tractable manner ideal precomputation policies for
prototypical classes of problems and scenarios.

We shall identify situations where local precomputation decisions lead to globally
optimal precomputation. Our analyses hinge on a consideration of the probabilities of
alternate forthcoming problems. Given information about the likelihood of future problem
instances, ranging from detailed probability distributions to more qualitative orderings by
likelihood, we seek policies that can guide the ideal expenditure of idle time.

We examine continual computation in several stages. First, we focus on continual
computation for traditional, all-or-nothing problem solving. For such problems, results
have no value unless a problem is solved completely. We consider the cases of minimizing
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response time and of minimizing the losses associated with problem-specific costs of delay
in addressing future tasks. Then, we explore continual computation for flexible procedures
that have the ability to generate partial results of increasing quality until reaching a final,
complete result. We explore several different situations of continual computation for these
procedures, including the cases where we optimize the expected value at the start of a future
period of problem solving and where we consider the additional real-time refinement and
accrual of costs prior to a result being rendered or action being taken.

We introduce the notion of expected value of precomputation (EVP) flux as a unifying
principle for continual computation and describe ideal policies for allocating idle and
non-idle resources to precomputation, in terms of EVP flux. After laying out policies
for several families of utility models for partial results, we discuss several challenges,
including the cost of shifting attention from one instance to another, trading the efficacy of
real-time problem solving for enhanced future responses, and precomputation and caching
over multiple periods. Finally, we discuss illustrative applications of the use of continual
computation, including its use in diagnostic reasoning and in the transmission of media
under limited-bandwidth channels.

2. Minimizing computational delay

We shall assume a model of computation where a computing system is stochastically
challenged with problem instances against a background of idle resources. We first define
problem instance, idle time, and precomputation time.

Definition 1. A problem instance I is a task posed to a computing system in real time.

Definition 2. Idle time ta is the period of time beginning at the completion or suspension
of computation on the most recently posed problem instance and ending at the time a
subsequent problem instance is posed to a computing system.

Definition 3. Precomputation time tp is the amount of computation time applied to solving
potential future problem instances.

Assume we have access to exact or approximate information about the probabilities
p(I | E) of seeing different problem instances I at the end of idle time, given some
evidence E, representing observations at the beginning of an idle period about a context,
situation, or environment, and background knowledge. Such probability distributions, as
well as more qualitative orderings over the likelihood of future instances, can be learned
from data or provided by a model of a system or environment.

Gaining access or modeling the likelihood of future instances can range from trivial to
difficult depending on the application. We will review examples of drawing probabilistic
information about future instances via computed and statistical models in the context of
sample real-world applications in Section 11. Beyond discussion of models used in the
sample applications, we will not dwell on the details for acquiring statistical information
or building inferential models that provide likelihoods of problem instances. Rather, we
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focus on the derivation of ideal policies that take as input likelihood information at any
level of precision that is available.

Given access to probabilities of future challenges, how should an agent spend its idle
time on precomputation? We shall initially focus on the subset of models of continual
computation that address maximizing the timeliness or quality of problem solving in the
next period of problem solving.

We first construct a policy for minimizing the time required for computational systems
to solve problems in a forthcoming problem-solving period. For this problem, we take as
our goal the harnessing of idle time to minimize the expected delay following the posing
of a new problem instance to a computing system. We shall assume that we have ample
memory to store acutely the partial results for the set of potential subproblems I1, . . . , In
under consideration for precomputation.

The delay associated with solving a future problem instance is a function of the specific
actions that the system takes to precompute responses to problem challenges and the overall
duration of the idle-time period. We compute the expected delay by summing together the
delay associated with solving each problem, weighted by the likelihood of the different
problems.

We use t
p
i to refer to the precomputation time allocated to problem instance Ii and

t (Ii) to refer to the time required to compute a solution to the problem instance. We shall
consider such times to be deterministic, but the analysis can be generalized to consider
probability distributions by considering expectations for these times.

In the absence of any precomputation, the expected delay for solving one of the potential
several future problem instances under uncertainty is

Expected Delay =
∑
i

p(Ii |E)t (Ii). (1)

If we apply computation to begin solving or to completely solve one or more potential
problems, the expected delay in the next period is

Expected Delay′ =
∑
i

p(Ii |E)
(
t (Ii )− t

p

i

)
, (2)

where t
p

i � t (Ii) and
∑

i t
p

i � ta .

Theorem 1 (Policy for minimal expected time to completion). Given an ordering over
problem instances by probability p(I1 | E) > p(I2 | E) > · · · > p(In | E), that each of
these problems will be passed to a problem solver in the next period, the idle-time resource
policy that minimizes the expected computation time in the next period is to apply all
resources to the most likely problem until it is solved, then the next most likely, and so on,
until the cessation of idle time or solution of all problems under consideration in the next
period.

We consider a set of instances, I1, . . . , In, ordered by the probability that each
instance will be seen at the end of idle time. If we differentiate Eq. (2) with respect to
precomputation time, we find that the rate of diminishment of the expected delay with the
precomputation of each instance is just the probability of the instance, p(Ii | E). Thus,
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the greatest overall diminishment to the expected delay for all instances will be obtained
by applying all resources to the most likely instance until that instance is solved. When
problem instance I1 is solved completely, it is removed from consideration and we make
the same argument iteratively with the remaining n− 1 problems and remaining idle time.
Unless we are certain that we will have enough idle time to solve all of the problems
under consideration, allocating resources to any problem except for the unsolved problem
with the highest likelihood will lead to a summation representing a smaller diminishment
in delay than allocating precomputation by problem likelihood. Thus, the ideal continual
computation policy for minimizing the expected delay in the next period is to sequence the
allocation of ideal resources by the likelihood of the problems until all of the instances are
solved or a real-time challenge arrives.

This result tells us that if we are uncertain about having sufficient resources for solving
all potential problem instances in the next period, we should allocate idle resources to
problems in the order of their probability, regardless of the size of the problems.

We note that a system does not require precise probabilistic information to guide
continual computation for minimizing delays at run time. A qualitative ordering over the
likelihood of future problem instances provides us with all the information we need to
construct an ideal policy for precomputation. Also, a system does not require complete
knowledge about all potential future problem instances. We can represent an implicit set
of unmodeled future instances by including an additional unknown state, In+1, in the
problem instance variable, and assign an estimated probability mass and an expected
required computation time for real-time solution of instances drawn from the set of
unknown instances. Such implicitly represented sets of problem instances cannot be
refined directly by precomputation as the instances remain unspecified. However, such
probabilistic modeling of the unknown can be valuable in the coherent modeling and
assignment of probabilities to future instances and for computing the overall expected value
of applying continual computation policies.

Beyond specifying an ideal policy for minimizing real-time delays, we can make
statements about idle-time allocation indifference. Because the rates at which delay is
minimized with precomputation is equivalent for instances with the same likelihood, we
can partition the resources among the instances of equal likelihood in any way without
influencing the expected run-time savings. So, if two or more of the most likely unsolved
instances have equal likelihood, we are indifferent to the partition of idle resources to these
instances. If all problem instances are equally likely, we are indifferent about the allocation
of idle-time resources.

3. Policies for minimizing the expected cost of delay

In time-critical situations, delays in generating a computational result are costly. For
example, in the cases of high-stakes, time-pressured decision making in emergency
medicine, physicians have to grapple with context-dependent costs of delayed evidence
gathering and treatment [45]. We can generalize the results on minimizing expected delay
to minimizing the expected cost of delay.
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Let us assume that we have, for each future problem instance, a time-dependent cost
function, Cost(Ii , t), that takes as arguments, an instance and the time delay required
to compute each instance following a challenge. Beyond specifying time criticality as a
function of the instance, we can employ a distinct context variable.

The contribution to the overall expected cost of the delay required to solve each
future instance Ii is p(Ii | E)Cost(Ii, t (Ii )). Without precomputation, the expected cost
of waiting for a response to the next challenge is,

Delay Cost =
∑
i

p(Ii |E)Cost
(
Ii , t (Ii)

)
. (3)

Allocating idle resources tpi � t (Ii ) to the precomputation of instances Ii will reduce the
overall expected cost of delay in the next period,

Delay Cost′ =
∑
i

p(Ii |E)Cost(Ii , t
(
Ii)− t

p

i

)
, (4)

where
∑

i t
p
i � ta .

We wish to allocate the total usable idle time in a way that minimizes the expected cost.
To identify an ideal policy for the general case of nonlinear cost functions, we are forced
to employ search or greedy analysis with small amounts of resource. However, general
strategies can be constructed for specific classes of cost function. For example, consider
the case where costs increase linearly with delay, Cost(Ii , t) = kit , where ki defines a rate
at which cost is incurred for each instance Ii . In such situations, precomputation of each
instance is associated with a constant rate of expected cost reduction, p(Ii |E)ki .

Theorem 2 (Policy for minimal cost in constant loss settings). Given an ordering of
instances by the probability they will be seen in the next period and instance-sensitive
losses that are linear with delays following the appearance of an instance, the policy that
minimizes the expected cost in the next period is to apply available idle resources in order
of the problem with the greatest rate of expected cost reduction until it is solved, then the
instance with next highest rate, and so on, until the cessation of idle time or solution of all
problems under consideration.

We make an analogous argument to the discussion of Theorem 1. Here, the component
of the comprehensive expected cost contributed by the expected delay for solving each
instance Ii is p(Ii | E)kit (Ii ). Allocating idle time to precompute an instance diminishes
the expected cost or, conversely, increases the expected value in the next period at a rate of
p(Ii |E)ki for each instance. The overall expected value in the next period is maximized by
allocating idle time to continue solving the instance associated with the greatest expected
rate of cost reduction, and to continue until it is solved, and then to solve the instance
with the next highest expected rate, and so on, until all of the instances have been solved.
Beyond the case where a system has certain knowledge of sufficient idle resources to solve
all of the instances, any other policy leads to the allocation of idle resources to solve an
instance with a smaller rate when an instance with a larger rate is available, and, thus, is
suboptimal for all situations.
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Analogous to the case for minimizing expected future delays, we can make an assertion
about allocation indifference for such situations. If two or more unsolved instances are
associated with the same rate of expected cost reduction, we are indifferent to the partition
of idle resources to these instances. If all problem instances have equal rates of expected
reduction, we are indifferent about the allocation of idle-time resources to potential future
instances.

4. Flexible computation, partial results, and precomputation

So far, we have described policies for minimizing the expected time and cost for
algorithms with all-or-nothing outcomes. It is assumed that these algorithms must solve
an instance completely before any value is derived from the computational investment.
We now broaden considerations to consider flexible, anytime computational strategies—
methods with the ability to refine the value of partial results with ongoing computational
effort until reaching a final answer of maximal value [21,46,47]. We shall assume that we
have access to one or more flexible algorithms, each with the ability to generate partial
results π(I) that may provide value to a system or person before a final, precise answer is
reached.

4.1. Expected value of computation

A system applies a flexible strategy S to refine an initial problem instance I or previously
computed partial result, π(I), into a new result, terminating on a final, or complete result,
φ(I).

In the general case, reasoning systems are uncertain about the value associated with
future computation. Thus, we consider a probability distribution over results achieved with
deliberation with a problem solving strategy, conditioned on the previous partial result, the
computational procedure, and the allocated resources,

S(π(I), t) → p
(
π ′(I) | π(I), S, t). (5)

Some research on flexible computation strategies has explored the application of decision
theory to reason about the expected value of allocating resources to refine partial results in
different settings. These efforts typically assume a utility model for assigning value to the
results and costs for allocated resources [6,48].

A key construct used in studies of deliberation of flexible procedures is the expected
value of computation (EVC) [47,48,51,61].

Definition 4. The expected value of computation (EVC) is the change in the net expected
value of a system’s behavior with the refinement of one or more results by computational
procedures with the allocation of computational resources, t .

To compute the EVC, we consider the probability distribution over outcomes of
computation and the costs of computation. If we assume that cost is a deterministic function
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of computation time, and that it is separable from the value of computation, the EVC for
refining a single result is,

EVC
(
π(I), Si , t

) =
∫
j

p
(
π ′
j (I ) | π(I), Si , t

)
uo

(
π ′
j (I )

) − uo
(
π(I)

) − Cost(t), (6)

where uo(π(I)) is the value of a previously computed partial result π(I). The value of the
result uo(π ′(I)) without regard to the cost incurred in its computation has been referred to
as the object-level value of result π ′(I).

4.2. Expected value of precomputation

We now turn to the value of precomputation. The expected value of precomputation
(EVP) is the expected increase in the expected utility of a system’s performance in a future
period with the allocation of precomputation resources. We can view EVP as the expected
EVC associated with the precomputation of one or more potential future instances under
uncertainty.

Definition 5. The expected value of precomputation (EVP) is the expected EVC
associated with precomputing one or more potential future problem instances Ii with
procedures Si with t

p
i of computational resources,

EVP =
∑
i

p(Ii |E)EVC
(
Si, Ii , t

p

i

)
, (7)

where t
p
i (Ii ) � t (Ii ) and

∑
i t

p
i � ta .

We now generalize the earlier focus on minimizing the expected delay for completely
solving potential future problem instances to consider the problem of allocating idle-time
resources with a goal of maximizing the future expected value of the behavior of the
system. We wish to allocate idle resources to different potential future problem instances
so as to optimize the EVP, given uncertainty in the quantity of idle resources.

Flexible computation strategies can be characterized in terms of the rate at which
they deliver future value with precomputation. In developing EVP policies for flexible
computational procedures, it is useful to consider changes in EVP with allocations of
precomputation to refine one or more partial results.

Definition 6. EVP flux, ψ(S, I, tp), of precomputing a result is the instantaneous rate at
which EVP changes at the point of allocating tp seconds of precomputation time to solving
problem I with strategy S,

ψ
(
Si, Ii , t

p
i

) = d EVP(Si , Ii , t
p

i )

dtpi
. (8)

For convenience, we shall assume that the selection of a strategy or sequence of
strategies S is predefined or optimized for each problem instance, and we will use S∗
to refer to these strategies. We shall not dwell in this paper on the problem of choosing
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ideal strategies; such work has been a focus of research on real-time reasoning under
varying and uncertain resources [5,6,11,21,22,48,50,51,59]. The choice of strategy does
not influence the basic results on policies for continual computation. We shall use ψ(I, t)

as shorthand to refer to the EVP flux associated with the strategy–instance pair after t

seconds of precomputation.
We shall develop continual computation policies for sequencing precomputation effort

among potential future problem instances by considering the ability of procedures to
generate ψ(I, t). Given information about EVP flux, we consider the total EVP of
allocation policies by integrating over the EVP flux for resources allocated to each instance
and summing together the EVP derived from precomputing each problem instance,

EVP =
∑
i

t
p
i∫

0

ψ(Ii , t)dt . (9)

Given uncertainty in the amount of idle time, the overall optimization problem is finding
the ideal set of allocations of the total idle time for precomputing each problem instance,
I ; the goal of an “anxious” automated reasoner is to allocate idle resources to strategy–
problem instance pairs under consideration so as to maximize the total EVP for the idle
period. In the general case, we must consider the details of the probability distribution over
idle time, p(tp | E), and employ exact or approximate general optimization methods to
choose the best set of allocations.

In lieu of employing general optimization, we seek to develop theorems analogous to
Theorems 1 and 2 for prototypical classes of EVP flux associated with solving sets of
future problem instances. We shall consider continual computation policies for families of
partial results with refinement profiles described with utility models summarized in Fig. 1.
We focus specifically on the case of problems that yield EVP flux described by linear,
piecewise-linear convex, piecewise linear concave, and continuous convex and concave
utility functions.

We first examine the case where we seek to harness idle-time reasoning with flexible
strategies to maximize the overall increase in expected value at the time the future

Fig. 1. Prototypical classes of utility, describing the refinement of partial results, include (a) continuous concave,
(b) piecewise-linear concave, (c) linear, (d) piecewise-linear convex, and (e) continuous convex.
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challenge is faced by the reasoning system. Then we will consider policies for the optimal
harnessing of idle time for flexible computation that maximize the increase in expected
value at the ideal time that the result should be used or that an action should be taken in
the world. For these policies, we seek to maximize the expected value of the response at
the ideal time that a result should be provided, based on a consideration of the costs and
benefits of allocating additional real-time resources to refine a partial result.

4.3. Continual computation policies for linear utility

Let us first consider the case where computational strategies generate a constant EVP
flux.

Theorem 3 (Idle resource policy for linear utility). Given problem instances Ii that may
be passed to a program in the next period, and an EVP flux ψ(Ii , t

p
i ) for the solution

of each instance that is constant with time, the idle-time resource partition policy that
maximizes the expected value at the start of the next period is to apply all resources to the
problem with the maximal EVP flux until a final result is reached, then allocating idle time
to refining the result with the next highest EVP flux, and so on, until the cessation of idle
time or solution of all problems possible in the next period.

By definition, the allocation of time to each instance for preselected reasoning strategies
S∗ applied to problem instances provide constant EVP fluxes ψ(Ii , t

p

i ) = ki for each
instance based on the refinement of a sequence of partial results. The total EVP is the
sum of the EVP derived from precomputation of each of the future problem instances.
For any amount of idle time less than the amount of time required to solve all instances
under consideration, the ideal policy is to apply all resources to the instance with the
highest value of ki . Citing the same argument used in Theorem 1, any amount of time
re-allocated to another instance would diminish the total EVP for cases of insufficient
idle resources because it would introduce terms with suboptimal value. When problem
instance I , associated with the largest product, is solved completely, it is removed from
consideration and the same argument is made with the remaining n− 1 problems.

4.4. Flux-dominated precomputation scenarios

We can generalize Theorem 3 by introducing the property of flux-dominated sets of
instances in precomputation settings.

Definition 7. A set of strategy–problem instance pairs is flux dominated if the set of
potential future problem instances can be ordered such that the minimum EVP flux
associated with precomputing any instance Ii is greater than the maximum EVP flux of
solving the solution of next instance in the ordering, Ii+1.

Flux dominated precomputation scenarios include the case of precomputing a set of
instances with distinct constant EVP fluxes. However it also covers sets of instances,
including the case where problem refinement yields non-linear EVP flux in accordance
with the flux-dominated property.
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Theorem 4 (Idle resource policy for flux-dominated settings). Given a set of future
problem instances Ii that exhibit the flux-dominated property, the idle-time resource
partition policy that maximizes the expected value at the start of the next period is to apply
all resources in the order dictated by the initial EVP flux of precomputation. The problem
with the highest EVP flux should be refined until a final result is reached, then the result
with the next highest initial EVP flux should be analyzed, and so on, until the cessation of
idle time or solution of all problems possible in the next period.

We assume an ordering of instances by the minimum EVP flux they yield upon
refinement. Per Eq. (9), the contribution to the total EVP of solving each instance is the
integration of the EVP flux over precomputation time. We know, from the property of flux-
dominated, that solving any portion of problem Ii will provide a greater EVP than the flux
of solving any portion of problem Ii+1 for all problems under consideration. The greatest
contribution to EVP is provided by computing in this order. Switching any precomputation
for refinement on an instance earlier in the order with one later in the order would lead to
a lower over EVP under uncertain idle resources.

In the general case of nonlinear EVP flux, local decisions about EVP cannot be exploited
to develop optimal policies. Identifying that problem instances under consideration are
rate-dominated, allows us to invoke Theorem 4 to drive continual computation even for
cases of nonlinear EVP flux. As an example, consider scenarios where EVP is described by
piecewise-linear convex or continuous convex utility functions, as displayed in Figs. 1(d)
and (e). With convex utility EVP is everywhere increasing and shows increasing rates of
flux with the progression of problem solving. Policies based on these refinement models
are typically sensitive to the probability distribution over idle time. However, if instances
demonstrating such increasing EVP flux with computation also are consistent with the
flux-dominated property, we can invoke an ideal continual computation policy based on a
sequencing of instances by EVP flux.

4.5. Ideal policies for decreasing-returns scenarios

We now consider continual computation policies where the rate of refinement of
solutions to problems slows with increasing computational activity. We refer to such
scenarios of decreasing returns as concave utility.

4.5.1. Policies for piecewise-linear concave utility
Let us first consider policies for sets of instance-strategy pairs that generate EVP flux

that are described by piecewise-linear concave functions, represented in Fig. 1(b). These
models represent the case where EVP increases with computation but successive segments
of computation are associated with decreasing EVP flux. Ideal policies for continual
computation with such a utility model can be derived by generalizing the results for the
case of constant EVP flux. Rather than associate problem instances with constant levels of
EVP flux, we consider the flux associated with successive components of the solution of
problems, and consider ideal strategies for solving these components.
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Theorem 5 (Idle resource policy for piecewise-linear concave utility). Given problem
instances Ii that may be observed in the next period and EVP flux ψ(Ii , t

p
i ), described

by a piecewise-linear concave model, the resource allocation policy that maximizes the
expected value at the start of the next period is to allocate resources to the problem segment
that has the greatest EVP flux of all available next problem segments, and to continue to
refine the selected instance until the segment is completed, and then to allocate resources
to the segment across all instances with the next highest EVP flux, and to continue this
process until all segments of all problems are solved or the cessation of idle time.

We generalize Theorem 3, centering on the ideal allocation of resources for problems
showing constant flux, by considering distinct regions of refinement of problems under
consideration, each labeled with a constant EVP flux as represented by the slope
of segments of the piecewise-linear concave utility models. Given decreasing returns,
we know that computation associated with earlier problem segments of instances will
necessarily have higher expected value flux than refinements associated with later segments
of the instances. Decreasing returns also tells us that an unsolved problem segment that
currently has a larger EVP flux than all other next available segments yields greater
EVP flux than can be provided by all other segments derived from any of the problems
under consideration. The arguments in Theorem 3 coupled with everywhere decreasing
returns constrain the policy with the greatest expected utility to be to continue to apply all
precomputation resources to the problem with the greatest EVP flux, until reaching the end
of the current EVP flux segment, then checking the next available segments of refinement
for all available problems and again selecting the problem associated with the segment
offering the highest expected flux. For the general case of having less precomputation
resources than the total usable idle time, selecting any other segment except the one with
the greatest EVP flux leads to a diminishment of the overall expected value at the start of
the next period.

The decreasing returns property allows us to construct ideal policies by continuing to
inspect only the next available problem segments for each unsolved problem to identify
the best sequence of segments. The policy for maximizing the expected value in the next
period is to continue to apply all resources to solving portions of problems in a sequence
dictated by the EVP flux of next available problem segments, allowing for jumps across
problems at the completion of each segment.

Fig. 2 captures the method for constructing an ideal sequence of segments from a set of
problems whose refinements are captured by piecewise-linear concave utility models. We
first transform the rate of refinement associated with computing each problem instance
into expected fluxes for solving future problems given uncertainty in their occurrence.
Then, an ideal policy is composed by continuing to expend all resources to solve the
problem segment drawn from all instances that delivers the greatest instantaneous flux.
In the case represented in Fig. 2, we portray a system considering three future problems,
I1, I2, and I3 under uncertainty. The rates of refinement under certainty are transformed
into EVP fluxes and a sequence is constructed by continuing to select the problem
segments with the next greatest EVP flux. In this case, we select segment 1 of problem
I1 (segment I1,1), then segment 1 of problem I2 (segment I2,1), then segment 2 of
problem I2 (segment I2,2), then segment 2 of problem I1 (segment I1,2), and so on,
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Fig. 2. EVP analysis for the case of piecewise-linear concave utility. We map the rate at which value is
generated with the solution of problems under certainty to expected precomputation flux (top) and compose a
precomputation policy by piecing together a sequence of segments in order of the EVP flux (bottom).

until all three problem instances under consideration are completely solved or idle time
ends.

4.5.2. Policies for continuous concave utility
We can generalize Theorem 2 to the case of continuous concave utility models by taking

the size of segments in the piecewise-linear models to zero in the limit.

Theorem 6 (Idle resource policy for continuous concave utility). Given instance–strategy
pairs being considered for precomputation, each showing an instantaneous change in EVP
flux with precomputation, dψ(Ii , t

p
i )/dt < 0, the resource allocation policy that maximizes

the expected value at the start of the next period is to continue to shift resources to the
problem with the maximal EVP flux, until all of the problems under consideration are
solved or until the cessation of idle time.

Given concave utility models, flux is positive but decreasing with the refinement of
instances. Thus, we know that earlier precomputation provides more EVP than later
refinements for any instance. The contribution to the total EVP of solving each instance is
the integral of the EVP flux over precomputation time. Per Eq. (9), the policy of continuing
to shift to the problem with the largest EVP flux leads to the maximum integrated EVP,
maximizing the total summed EVP across instances for any amount of computation time.
Changing the ordering of precomputation in any way would lead to a lower expected EVP
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for situations where there is uncertainty about having sufficient precomputation time to
solve all instances completely.

We can alternatively view this result as generalizing the arguments of Theorem 5 by
taking the length of piecewise-linear segments to zero in the limit. The policy of continuing
to select refinements with the greatest flux from all of the next available refinements is
optimal even as we squeeze the size of segments down to zero.

In real-world computing, we must allocate some finite amount of computational
resources to instance refinement. For EVP described by continuous concave utility
functions, the policy for maximizing the contribution to the expected value in the next
period will be to continually pick the problem associated with the highest mean EVP
flux for that small quantity of expenditure. Because each instance has an EVP flux that
is monotonically decreasing with allocation of resources, the greatest currently available
flux must be greater than the future EVP flux associated with this or any other instance.
Thus, guiding allocation by the local mean EVP flux leads to ideal expected overall
EVP.

As portrayed in Fig. 3 we generalize the case of piecewise-linear concave utility, by
mapping the instantaneous refinement with solving each instance for the deterministic
situation associated to the expected flux for solving future problems under uncertainty,
and allocate resources to problems in a sequence such that the expected flux is always
maximal.

Fig. 3. EVP analysis for case of continuous concave utility. We map the rate of refinement for solving problems
for solving problems to EVP flux (top) and build a policy by piecing together a sequence of segments in order of
expected flux (bottom) with additional precomputation.
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4.6. Approximations for general nonlinear utility

Beyond the identified utility models and properties, we cannot generally employ local
EVP analysis to derive a globally optimal solution without considering multiple sequences
of precomputation and the probability distribution over idle time. Thus, for the general
case of nonlinear EVP under uncertain idle time, we are forced to perform more general
optimization to seek policies of maximum value. In lieu of such optimizations, we can
attempt to use approximate, greedy allocation strategies.

In a basic myopic approach, we consider the best next allocation of small amounts of idle
time, �tp, assuming that idle time ends at the end of the allocation. We consider the EVP
flux for an instance to be constant for small �tp regions and harken back to Theorem 3,
substituting the mean flux during the time slice for the constant flux. Thus, at each turn, we
allocate all of the time to the instance with the greatest mean EVP flux over this time, and
continue to apply this greedy procedure as more time is available.

In an another approximation, we partition idle time into a sequence of time periods
and summarize the EVP flux of instances that do not show constant or concave utility in
terms of mean fluxes over progressively larger spans of time. We compose an approximate
piecewise-linear utility function by substituting the mean flux of the given utility function
within each period for the detailed flux. If adjacent segments of the evolving piecewise-
linear functions show convexity, we recursively merge the segments and consider instead
the mean flux across the merged period. We continue this process until the approximate
utility function is linear or piecewise-linear concave. Give a set of instances with concave
or linear models, we employ composition methods described in Section 6 to generate an
approximate continual-computation policy.

5. Considering future real-time deliberation

So far, we have focused on EVP for flexible procedures targeted at the optimization
of the expected value of the system at the time a new challenge is received. A system
employing a flexible computation strategy should not necessarily yield its result or act
immediately at the end of idle time. It may be valuable to perform additional real-time
computation. We now consider policies that fold into consideration the ideal time to
continue to compute a solution after a problem is encountered in real time.

Let us first examine scenarios in the absence of precomputation. Consider situations of
time-critical computation captured by the graphs in Fig. 4. We refer to this class of problem
as concave value, constant cost scenarios [50].

Definition 8. Concave value, constant cost scenarios, are real-time problems where the
allocation of computational effort to the solution of problem instances provides continuous
monotonically increasing values of partial results with decreasing marginal returns and the
cost of reasoning increases at a constant rate with real-time delays until computation halts
or a final result is generated.
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Fig. 4. Graphical analysis of ideal halting time for refining an instance with partial results showing continuous
concave utility in light of a constant rate of cost. Cost is depicted on a negative scale for clarity (from [50]).

Strategies providing continuous concave refinement in the context of constant rate
of cost has been explored by the community of researchers interested in time-critical
reasoning. It is straightforward to identify the ideal quantity of real-time deliberation for
these problems [50].

Theorem 7 (Ideal extent for concave value, constant cost problems). In concave value,
constant cost scenarios, a result should be rendered or action should be taken immediately
in the world if the EVC at the outset of a challenge is nonpositive; otherwise, real-time
computation should continue until the rate of refinement is equal to the cost of computation.

It is worthwhile to continue computing if the EVC is positive. The instantaneous
refinement of real-time computation is the difference between the rate at which the total
benefit and costs of delay change with additional refinement of a result. If the cost of
delay following a challenge is greater than the initial real-time refinement when a challenge
occurs, the EVC of any computation is negative and, by definition of decreasing returns,
will only become further negative with additional real-time computation. Thus, action
should be taken immediately with the result available the current level of refinement. On
the other hand, if the initial rate of refinement is greater than the cost, the EVC will be
positive so it is worthwhile to further refine the result with real-time computation, even
in the face of the cost of the delay. Because the rate at which the total cost is accrued is
constant and the EVC flux continues to diminish monotonically with ongoing refinement,
we know that the result will either be solved completely or that, sometime before this
happens, the rate at which cost is accrued will become equal before becoming greater than
the EVC flux and remain greater thereafter, yielding a negative EVC. Thus, action should
be taken immediately without additional refinement if the initial real-time EVC flux is less
then the cost; else, computation should continue until the instance is completely refined or
the rate of refinement of the result becomes equal to the cost of delay.

Fig. 4 demonstrates graphically the key ideas of ideal halting for this type of real-
time problem. An instance is refined into partial results π(I) with computation or
precomputation time t , eventually reaching the final result, φ(I). A broken line, tangent
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to the utility of partial results, portrays the rate of refinement at the ideal halting time t∗
when π∗(I) is reached. At this point, the rate of refinement is equal to the rate at which
cost is incurred. Continuing to do real-time computation after this level would incur cost
faster than gains in value.

Let us now consider continual-computation policies for scenarios of concave value,
constant cost. The value flux generated by a flexible procedure operating on a result is a
function of the amount of time that has been invested in refining an initial problem instance.
The level of refinement attained by prior computation determines the instantaneous rate of
refinement associated with additional computation.

We shall refer to the partial result generated at the ideal time, t∗ indicated for halting
for a particular cost function C(t), strategy S, and instance I , per Theorem 7 as the ideal
real-time result, π∗(I), for that strategy, instance, and cost function. π∗(I) is insensitive
to the amount of precomputation applied to an instance.

Consider the case where a system will face a problem instance with probability 1.0. In
this case, the value of the ideal real-time result, for the case of zero precomputation, is
simply the expected utility associated with action with π∗(I), u(π∗(I)), less the total cost
accrued so far. The total cost is simply the product of the rate at which cost is accrued and
the ideal halting time.

Precomputation for scenarios of continuous concave utility with constant cost can be
viewed as a means of attaining cost-free refinement of a result. Precomputation spanning
the range of refinement up to the result with a quality represented by π∗(I) can be viewed
as removing the influence of cost during the time allocated to precomputing the result.
Thus, we can view precomputation during this time as adding value to the utility achieved
when the result reaches π∗(I) with an EVP flux equal to the rate at which real-time cost
would have been accrued without precomputation.

Fig. 5(a) displays graphically the impact of precomputation on the value of the result at
the ideal halting time. The revised reasoning problem is represented by the solid lines held
in contrast to the broken lines, representing the situation of real-time reasoning without
precomputation. As portrayed in the figure, cost only begins to influence the value of the
result when real-time reasoning begins. Overall, precomputation reduces the required real-
time computation and raises the ultimate value of the ideal real-time result by the total
real-time cost saved. Two small vertical arrows in Fig. 5(a) represent the boost in value
achieved with precomputation time allocated before reaching the ideal real-time result,
π∗(I).

We now consider the case of continuing to refine a result with precomputation beyond
the refinement represented by the ideal real-time result. Additional precomputation applied
to refining a result beyond π∗(I) adds additional value at the cost-free rate of refinement
provided by the strategy at progressively greater times after the ideal halting time. Fig. 5(b)
displays graphically how refining a result with precomputation beyond the quality of the
ideal real-time result adds value in accordance with the flux delivered by the strategy in
these regimes. Vertical arrows show the boost to the utility of the real-time result via
allocation of precomputation time to refinement in regimes before and after the ideal real-
time result.

In summary, we must consider two situations for computing the EVP associated with
precomputing instances for scenarios of concave value, constant cost. If the level of
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Fig. 5. (a) Graphical analysis of the influence of precomputation on ideal halting time and ultimate value of a
result for the regime where partial results are less refined than the ideal real-time result. (b) Analysis of value of
continuing precomputation subsequent to generating an ideal real-time result.

refinement of a result reached with precomputation is less than the value represented by
π∗(I), the EVP is the product of the rate at which cost is accrued and the probability of
being challenged with the instance. For refinement of a result by precomputation beyond
the quality represented by π∗(I), the EVP is the product of the EVC flux associated with
the strategy and the probability of seeing the instance.

Armed with analyses of these two situations, we can develop policies for the general
case of multiple problem instances and uncertainty. Given a set of potential future problem
instances, we can adapt Theorem 7 to provide a continual computation policy. We consider
all instances under uncertainty and note, for each instance, whether the partial result
achieved so far with precomputation falls short of the quality of π∗(I).

Theorem 8 (Policy for concave value, constant cost settings). For scenarios characterized
by continuous concave refinement with constant cost, it is ideal to allocate idle
computational resources to solving instances in order of the product of the probability
of the instance and the cost of delay when refinement is below π∗(I) and the product of
the rate of refinement and the probability of the instance when refinement of the result is
greater than π∗(I).

6. Composing policies for mixtures of models

So far, we have focused on distinct policies for families of problem solving grouped
by prototypical utility profiles. We can build composite continual-computation policies for
instance–strategy pairs that span different families, including scenarios including both all-
or-nothing computation and flexible procedures. Let us first cast policies for all-or-nothing
computation, as described in Sections 2 and 3, in terms of EVP flux.

Precomputation scenarios allow us to transform traditional all-or-nothing computation
into problems that show an incremental return for the investment of offline resources.
For example, we can easily transform the continual-computation policies developed for
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minimizing expected costs for all-or-nothing problems into EVP flux problems. We map
the minimization of total expected run time for all-or-nothing algorithms to an EVP-flux
viewpoint by assessing a utility model for differing real-time delays required to generate
a final result. Utility models for delay that provide linear or monotonically decreasing
increases in expected value with precomputation time can be mapped to the appropriate
continual-computation policies described in this section. By invoking utility models and
substituting EVP fluxes for the reduction of expected latency or cost, Theorems 1 and 2
become identical to Theorem 3.

We can compose optimal continual-computation policies for scenarios where local
decisions guided by EVP flux are consistent with globally optimal EVP. Such a condition
exists when can partition all problem instances into prototypical classes of precomputation
problems.

First, we seek to identify a set of instance–strategy pairs representing a flux-dominated
precomputation subproblem where the instance with the smallest EVP flux of the set of
instances in the subproblem dominates the EVP flux provided by all instances in other
classes. If such a subset exists, and all of the instances in the other classes provide EVP
flux described by either constant or concave utility functions, we can use local decisions to
develop a globally optimal continual-computation policy.

Theorem 9 (Composition of continual computation policies). Given a set of potential
future instance–strategy pairs that can be decomposed into a flux-dominated subset of
instances, and a complement of instances that show constant or decreasing flux with
refinement, the ideal allocation for continual computation is to first compute the flux-
dominated instances in the order of initial EVP flux, followed by precomputing portions
of instances that are available for refinement as directed locally by the maximal EVP flux
provided by portions of instances, continuing until completing the refinement of all of the
instances or the end of idle time.

The composition policy follows from the earlier results. We know, by definition of flux-
dominated, that we will derive the most EVP by solving these problems in the order
of their initial or minimal EVP flux. After such instances are precomputed, we know
that ordering computation for constant, piecewise-linear concave, or continuous concave
models by EVP flux leads to an ideal EVP overall EVP for the complement of the instances.
Thus, the sum of the EVP from the flux-dominated and the other instances is maximized.
For instances in the flux-dominated subset and instances represented by linear utility and
linear segments of piecewise-linear utility models, we can continue to precompute for an
entire instance or segment without performing checks on EVP flux. However, for a set
of instances providing concave utility with refinement, shifts in attention among multiple
problem instances may be indicated as idle resources are expended per the maximal
available EVP flux. Such consideration requires either ongoing estimation of the EVP flux
available from multiple problems, or analysis (potentially offline) of the ideal sequence of
precomputation identified by considering the EVP flux for functional descriptions of the
utility models.
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7. Continual computation over multiple periods

We have discussed policies for allocating available resources to enhancing the efficiency
of problem solving in the next period based on a current probability distribution. In the
general case, policies for directing precomputation over multiple periods must consider
probabilistic relationships among instances and the probabilities of alternate sequences of
instances over time.

If we assume independence among problem instances, we can employ continual
computation, in conjunction with the caching of results, to maximize the response of
a system over multiple periods. Given the assumption of probabilistically independent
problem instances, a system can continue to perform ideal continual computation
according to the policies described in Sections 2 and 3 over multiple periods. In a
world abiding by such assumptions, local decisions optimize precomputation over multiple
periods.

Consider the situation where continual computation has just been broken by the arrival
of a specific problem instance. When idle time is broken, the results of the recent
precomputation remain cached in memory. In the next idle period, we continue to refine
results via precomputation, starting from the cached partial results and real-time computed
result. For an unchanged probability distribution over problem instances, the overall two-
period problem is equivalent to the single period continual-computation problem, extended
with idle time derived from two adjacent idle periods, and with the additional value
achieved through real-time computation applied to the specific instance that occurred
between the two periods. We can perform the same analysis for n periods of idle time.

Now let us turn to situations where there are probabilistic dependencies among problem
instances. In this situation, a system can construct a tree of future precomputation problems
and can consider performing precomputation of instances at varying depths in the tree
with current idle resources. Ongoing updates of the probability distributions over future
problems and of continual computation policies can be made as instances and evidence are
observed over time.

Deliberating about the expected value of continual computation for instances in the next
period, versus a more distant period of problem solving, must take into consideration
the probability distribution over idle time available in future periods. The availability of
idle time in a future precomputation problem determines the value of allocating currently
available idle resources to the future periods. The future distribution over idle time may be
a function of the probability distribution over problems that will be encountered in advance
of a future idle period under consideration.

Let us use EVP*(p(ta | E)) to refer to the ideal expected value of precomputation
derived by following an optimal continual computation policy, given a probability
distribution over idle time in a future period. The ideal EVP is identified by following the
precomputation sequencing specified by a continual computation policy. For example, for a
set of instances that each provide some constant EVP flux, we consider the precomputation
sequence dictated by the continual computation policy for constant EVP flux, yielding
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EVP∗(p(ta |E)
) =

t (I1)∫
0

p
(
ta |E)

taψ1 dta +
t (I1)+t (I2)∫
t (I1)

p
(
ta |E)

taψ2 dta + · · ·

+
∑

1..n t (Ii )∫
∑

1..n−1 t (Ii )

p
(
ta |E)

tpψn dta. (10)

In deliberating about the value of continuing to precompute potential problems in the
next period versus in a more distant period of problem solving, we compare the EVP
flux, provided by the continuing execution of the policy for the upcoming problem,
with the instantaneous changes in the EVP* of future periods, achieved via allocating
current precomputation resources to initiating the refinement of instances dictated by the
future policy. We consider instances in the distant period as providing flux, and create
compositional policies including these instances. If the current continual-computation
policy is composed of instances showing linear or concave utility, we should shift to the
precomputation of instances in more distant periods when

d EVP∗(p(ta |E))

dt
> ψ

(
Ii , ti

p
)
, (11)

where Ii is the instance at the current focus of attention in the continual computation
policy being executed for the next problem and ti

p is the amount of precomputation
time already allocated to the precomputation of that instance. The instantaneous change
in value associated with computing instances in the next and more distant periods can
diminish at different rates with the allocation of precomputation resources. Thus, continual
computation policies across multiple periods can continue to shift among the refinement of
instances in the different periods, just as it might within a single period of analysis.

We note that a decision making system may have time preferences about the value
associated with computation and action at increasingly distant future periods. Such time
preferences can be represented by a parameter that discounts the value of future results
with temporal distance.

8. Allocating real-time resources to the future

So far, we have considered the allocation of available idle time for solving future
challenges and have assumed that real-time resources are fully dedicated to solving
current problem challenges. However, reasoning systems have the option of suspending
or slowing current execution and to apply real-time resources to precomputing potential
future problems.

It is worthwhile allocating resources from current to future problems when the change in
the EVP of solving future problems outweighs the loss of value associated with continuing
to solve the current problem. As we mentioned in Section 7, the magnitude of the boost
in EVP associated with the redirection of resources to a future precomputation problem
depends on the amount of idle time that will be available before the next challenge
arrives. If there will be sufficient idle time to precompute all possible future problem
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instances, nothing will be gained by a transfer of real-time resources to precomputation.
Thus, we must consider the probability distribution over the available idle time and use
this information to compute the expected value of transferring real-time resources, being
directed at an existing computational challenge, to solving potential future problems.

We again consider the ideal value, EVP*, achieved by employing a continual computa-
tion policy to precompute problems in a future period, as described in Section 7. Decisions
about terminating current computation to enhance precomputation influence the probabil-
ity distribution over idle time. The probability distribution over idle time, p(ta | E), is a
function of the expected time until completing or halting the current task and the probabil-
ity distribution over the time a next problem instance will appear. We compare p(ta | E)

with the probability distribution over the idle time p(ta
′ |E) in a world where the current

problem solving were to cease before completion as dictated by the real-time refinement
policy. Such a premature halt shifts the expected time required to finish the current problem
to idle time. If the expected value of the gain is greater than the loss it is better to shift from
computation to precomputation,

EVP∗(p(ta′ |E)
) − EVP∗(p(ta | E)

)
> u

(
φ(Ii)

) − u
(
π(Ii)

)
, (12)

where u(π(Ii)) is the current partial result achieved with real-time refinement and u(φ(Ii))

is the utility of the result that would be computed by allocating all resources to real-time
problem solving.

For making such decisions about allocating resources to the present versus future, a
system can continue to reassess the probability distribution over idle time and compare
the current expected value of precomputation versus the value of continuing to refine
the current problem. Such updating and re-evaluation can lead to an interleaving of
computation and precomputation. In special situations, the analysis of this probability
distribution may simplified per the nature of the temporal distribution of problem instances.
For example, the analysis is simplified for the case where the timing of future problem
instances is described by a memoryless, Poisson distribution.

9. Considering the cost of shifting attention

As we have seen, policies for continual computation often dictate a sequence of shifts
of allocation of resources among problems. Shifting the focus of precomputation attention
from one instance to another may incur costs stemming from swapping partial results into
and out of memory and initiating new algorithmic activity. Manipulating an extremely fine
grain size for resource allocations and allocation decision making can generate significant
overhead in light of such costs of switching. Thus, in real-world applications, we may wish
to impose a lower-bound on the size of the minimum allocation of resources. The cost of
shifting attention can influence decisions about shifting to problems with greater EVP flux.
However, continual computation policies can be modified to take such costs of shifting
analysis into consideration.

When an EVP analysis indicates that another instance will deliver greater flux with
additional precomputation, a system can seek to ascertain whether making an investment
in shifting attention would have an overall positive net value. Systems should compare the
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expected value of shifting precomputation to a problem instance with higher EVP flux,
versus continuing with the lower flux refinement of the current problem, considering the
cost of the swapping of instances and the probability distribution over the remaining idle
resources. If the current problem is solved completely, there is no choice but to make an
investment in moving on to refining another problem instance with the best next EVP flux.
However, if the EVP flux of solving a problem at the focus of precomputational activity
becomes dominated by another potential problem instance, we consider the probability
distribution over idle time remaining to determine whether the expected return of the shift
are greater than the costs of the shift.

As an example, consider the case of continual computation for precomputation of future
problem instances that show piecewise-linear concave utility. Assume that we have just
come to a bend in the utility function for the refinement of problem instance I1 after
some period of precomputation of the instance. Now, a different instance, I2, promises
the greatest EVP flux. At the current time to, the flux of I1 is ψ(I1, to) and the flux of I2 is
ψ(I2, to), ψ(I1, to) < ψ(I2, to).

We now consider the expected value of shifting precomputation from I1 to I2, taking a
cost Costs as the charge for shifting attention. To compute the expected net gain in shifting
from one instance to another, we consider the probability distribution over remaining idle
time, tr , given the quantity of idle time that has already been expended in the current
period, te . We take the difference of the EVP of continuing and the EVP of switching, given
uncertainty in the remaining idle time. We obtain the EVP for each strategy by integrating
each EVP flux ψ(Ii , to + tr ) with respect to the remaining idle time tr and consider the
uncertainty in the idle time. The expected value of shifting (EV Shift)to the new problem
instance is,

EV Shift =
∫
t r

p
(
tr | te)

t r∫
0

(
ψ(I2, to + t)−ψ(I1, to + t)

)
dt dtr − Costs . (13)

Consider the case where the analysis of shifting attention occurs over constant flux
regions of both the current and the new problem instances. In such a case, we have constant
fluxes, ψ1 and ψ2, and the expected value of shifting to the new problem instance is,

EV Shift =
∫
t r

p
(
tr | te)[tr (ψ2 −ψ1)

] − Costs, (14)

which is just

EV Shift = tr (ψ2 −ψ1)− Costs . (15)

Eq. (15) specifies that it will only be worth shifting if the mean remaining idle time, tr ,
is greater than the ratio of the cost of shifting attention and the difference of the expected
rates,

tr >
Costs

ψ2 −ψ1
. (16)
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An analogous analysis can be formulated for problem instances showing precomputation
flux represented by continuous utility models and for mixes of piecewise-linear and
continuous utility models. We integrate over the flux dictated by the policies for the case
of shifting and not shifting and consider the probability distribution over idle time.

10. Memory, caching, and continual computation

A system continuing to perform continual computation over multiple periods has an
opportunity to deliberate about retaining partial results. The value of caching partial and
complete results depends on the gains associated with the future expected value of the
partial results and the quantity or the cost of memory over time to store the results.

Let us consider decision making about memory usage for a fixed quantity of storage. If
there is not enough memory to cache all computed instances, a system must decide which
results should be retained versus discarded when more valuable results become available.
A knapsack analysis can be employed to identify the ideal configuration of stored results,
where cached items have a value equal to the expected utility of caching the partial result
in memory, EVM(π(Ii)) and an expected memory cost of the quantity of memory required
to store the result, Costm.

EVM(π(Ii)) is the difference between the expected utility of having and not having
result π(Ii) in memory, weighted by the probability of seeing the result. Approximations
for EVM include taking the difference of the expected value of having and not having
the result in a computationless setting, where the best result available is used in real
time through the application of situation–action rules. More comprehensive analyses take
into consideration the additional gains in value achieved by precomputation and real-time
computation should an instance be seen for having and not having the result,

EVM
(
π(Ii)

) = p(Ii |E)
(
u
(
S,π(Ii), t

) − u(S, Ii , t
′)
)
, (17)

where t and t ′ represent the total precomputation and real-time resources allocated by
existing policies to the further refinement of π(Ii) and Ii respectively. The additional
refinement of a future instance depends on precomputation policies, the probability
distribution over idle time, the inferred likelihoods of future instances, and the cache
status of other instances under consideration. For an invariant probability distribution
over problems, we can compute the expected additional precomputation and real-time
computation that π(Ii) and Ii would be expected to receive and the ultimate value of
the cached result. Such computation can be performed as part of ongoing continual
computation. In one approach, systems can defer caching decisions by allowing temporary
storage for a bounded amount of time to allow appropriate utilities to come available in the
normal course of continual computation.

Given assessments of the expected value and memory costs of cached results, we can
optimize the total expected value of a store via a knapsack analysis. Solving the knapsack
problem optimally is an NP-complete problem [24]. However, we can employ approximate
greedy or semi-greedy algorithms in an attempt to maximize the overall expected value
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of cached results. For example, with a value-density approximation, we prioritize partial
results for storage in an order dictated by the ratio of EVM(π(Ii)) and Costm(π(I2)),

EVM(π(I1))

Costm(π(I1))
>

EVM(π(I2))

Costm(π(I2))
> · · ·> EVM(π(In))

Costm(π(In))
. (18)

The value-density approach is used in an approximation procedure to come within a factor
of two of the maximal value storage policy. Limited search among subsets of elements
under consideration can further refine the approximation [62]. In an ongoing approximate
knapsack analysis, ongoing EVP precomputation and caching analysis continue to update
a result store.

We note that the incrementality of continual computation can lead to problems with
the caching of partial results. Consider the case where the storage of a partial result for
an instance requires some constant memory. For initial precomputation the value density
may be quite low, leading to the risk that a partial result may be continually discarded
when memory is full. Such a problem can be addressed approximately by considering
as an upper bound on value the expected value of complete results in making caching
decisions.

11. Real-world applications

Continual computation methods hold promise for enhancing the use of a spectrum
of computational procedures including optimization of resource allocation in operating
systems and databases, transmission of information over limited-bandwidth networks,
and automated planning and decision-making tasks. We now review sample applications
of continual computation for decision-theoretic diagnostic systems and prefetching
information over limited bandwidth channels.

11.1. Continual computation in diagnostic reasoning

Over the last fifteen years, researchers have made significant advances on probabilistic
representations and inference machinery that can support diagnosis and troubleshooting
in challenging real-world domains [8,32,34,36,66]. A significant number of interactive
diagnostic systems based on probability and decision theory have been field in a variety of
areas including healthcare, aerospace, and computing arenas. These systems, sometimes
referred to as normative diagnostic systems, employ probabilistic models to compute
probability distributions over states of interest, based on a set of findings. Many of these
systems are designed for interactive use, allowing the user and computer to collaborate
on the iterative refinement of a diagnosis through identifying useful new information to
gather. Interactive systems typically employ an iterative approach to refining the diagnosis
called sequential diagnosis [28]. The flow of control of sequential diagnosis is displayed
in Fig. 6.

Sequential diagnosis invokes a cycle of analysis with phases of belief assignment
and information gathering. In the belief-assignment phase of analysis, probabilities of
alternate disorders are computed from consideration of the set of observations already



184 E. Horvitz / Artificial Intelligence 126 (2001) 159–196

Fig. 6. Cycle of sequential diagnosis. Sequential diagnosis centers on the interleaving of phases of belief
assignment and information gathering.

being considered by the system. These likelihoods are then considered by the information-
gathering phase, where the best next recommendations for refining the diagnosis are
computed. The recommendations generated in the information-gathering phase leads to the
collection of additional evidence, which is added to the set of evidence already considered,
and the system re-enters the belief-assignment phase. The cycle of belief assignment and
information gathering continues until no valuable observations are available based on a
cost–benefit analysis called expected value of information (EVI).

EVI is the difference between the value of observing new information under uncertainty,
and the cost of making the observation. To compute EVI, the systems consider, for
each observation, the expected value of the best action in the world for each value the
observation can take on. Then, the expected utilities for each value are summed together,
weighted by the probabilities of seeing the different values, should the observation be
made. Given previously observed evidence, E, the systems consider the possible states that
potential new observations ex may take on after such observations are evaluated through
inspection of a system in the world. Using, ex,k to represent the new observation that would
be seen if ex was to be observed and Cost(ex), to represent the cost of making observation
ex , we compute EVI as follows,

EVI(ex,E) =
∑
k

p(ex,k | E)

(
max
A

∑
j

u(Ai,Hj )p(Hj |E,ex,k)

)

− max
A

∑
j

u(Ai,Hj )p(Hj |E)− Cost(ex). (19)

In the general case, we must consider all possible sequences of observations. This
intractable computation has been avoided in practice by performing a greedy EVI analysis
where systems compute or approximate the EVI for single pieces of previously unobserved
evidence, under the myopic assumption that an action will be taken after the observation of
one piece of evidence. The myopic EVI is used to identify the piece of evidence associated
with the highest EVI.

The computation of EVI can impose noticeable delays for computation in decision-
support systems depending on the platform and the problem being solved. Probabilistic
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inference in general graphical models like Bayesian networks and influence diagrams
is NP-hard [19,20]. The computation of EVI, even for the case of the greedy analysis,
requires, for each piece of unobserved evidence, probabilistic inference about the outcome
of seeing the spectrum of alternate values should that observation be carried out. Multiple
computations for each potential test or observation must be considered. Thus, even one-
step lookaheads can be costly. A variety of less-expensive approximations for EVI have
been explored including the selection of tests based on the minimization of entropy [3,4,
34], and the use of the statistical properties of large samples to develop value of information
approximations [33].

The computation of EVI in a sequential diagnostic setting is a natural candidate for
continual computation. The time required for a user to review a recommendation, make
an observation or perform a test in the world, and report the result to the system can
provide significant recurrent idle periods. Such idle time is an opportunity for continual
computation policies to proactively cycle ahead into the uncertain future, performing
computation of potential future belief updating and information-gathering analyses.

Serendipitously for continual computation, the EVI computation includes the compu-
tation of p(ex,k | E) for all unobserved evidence, representing the probability of seeing
future values of observations, should the observations be made in the world. Such informa-
tion, computed in the normal course of diagnostic reasoning, can be harnessed by continual
computation to guide precomputation.

For the purposes of continual computation, we take as problem instances the set of
potential next observations that will be made. The probability of the next observation
depends in part on the way recommendations for observations are presented to the user
in a diagnostic system. For example, a user may be presented with only the best next
observation to make or a list of recommended observations to make ranked by EVI.

Consider the case where only the next best recommendation ei is displayed to a user. The
system has already computed probabilities p(ei = k | E) of seeing different states when
observation ei is made. These probabilities can be employed in a continual computation
policy that considers the likelihoods of each of the k potential pieces of evidence being
input to the system at the end of idle time. Continual computation can use these likelihoods
to execute numerous steps of sequential diagnosis under uncertainty, precomputing and
caching an ideal tree of future inferences and recommendations.

For diagnostic systems that present sorted lists of recommended new observations to
users, we employ a model that provides the likelihood that a recommendation for an
observation will be followed. Such a model provides the probability that a finding will be
selected for evaluation based on such factors as the position of the recommended finding
on a sorted list, the relative magnitude of the EVI displayed for each of the recommended
findings, and the context of the diagnostic session. We compute the probability of the next
evidence that will be input to the system as the product of the probability of observed state,
computed by EVI, and the probability that the user will select finding y from the list, given
evidence about the display list and context.

Continual computation harnessing such probabilistic information on future observations
can minimize the total time of computation required in real-time by directing the available
idle time to future problem instances in order of their computed probability.
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11.2. Prefetching media under constrained bandwidth

Opportunities for employing principles of continual computation also arise in the
communication of content in situations of scarce bandwidth for networking. The methods
hold opportunity for enhancing the consumer experience of browsing content from the
Internet. Currently, people often endure significant delays as information flows through
the bottleneck of local modem connections. Continual-computation policies for guiding
the flow of information—which we refer to as continual networking—can be leveraged
to minimize the expected latencies associated with accessing information via such low-
bandwidth communication links. Effective continual networking policies for prefecting
information that may be accessed later can effectively widen the stricture on bandwidth
imposed by slow connections.

Opportunities for prefetching content are underscored by typical patterns of information
access displayed by people accessing information from servers which show intermittent
bursts of downloading content amidst relatively long periods of idle connection time
while users review the content or perform other tasks. Continual networking policies for
harnessing such idle time to prefetch information into local caches have application on the
client side as well as in client-server prefetching policies.

For the challenge of employing principles of continual computation to prefetching
documents and media from the Internet, we consider problem instances to be the
transmission of documents from servers to a local cache via the constraints of a local
limited-bandwith connection. We decompose network-based content to generate partial
documents and employ utility models to represent the value of having partial content
available for immediate perusal.

Documents can typically be decomposed in a natural manner. A fundamental strategy
for decomposing documents into partial results is simple serial truncation of content
where resources are used to incrementally extend the completeness of the document.
Beyond simple truncation with incremental extension, content can be decomposed through
abstraction via alternate forms of summarization, and via the excision of specific classes
of content. As a familiar example of excising broad classes of content, Internet browsers
and servers allow users to specify whether they would like to suppress the downloading of
complex graphics to speed the transmission of text associated with documents. A variety
of methods that provide partial results for graphical content are already in use, centering
on the flexible degradation of the resolution of images [44] employed in wavelet-based
progressive transmission schemes and other schemes that manipulate generative models
used in graphics such as progressive mesh simplification [38].

We have explored continual-networking policies for guiding the prefetching of docu-
ments [41]. Given a document decomposition strategy, we can employ utility models that
assign value to partial content to capture the value of having immediate access to progres-
sively larger portions of the total content of desired documents. We have pursued the use
of piecewise-linear and continuous concave utility models to represent the value of hav-
ing immediate access to portions of internet content as a function of the completeness of
the download. These models capture the common situation where having immediate ac-
cess to an initial portion of the document is most valuable and where additional content is
associated with positive, but decreasing marginal increases in value with continuing down-
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loading. Models of decreasing marginal utility are justified by two common features of web
content. For one, the cognitive bottleneck of reviewing the initial portions of documents
often allows idle resources for downloading progressively later portions of a document.
Second, the typical structure of documents in combination with the typical experience of
searching to see if a document has the right information, leads to the common situation
where a great majority of the value of the total content is provided in the initial portions of
a document.

Fig. 7(a) captures a piecewise-linear concave utility model, representing the value of
having immediate access to portions of content contained in a network-based document.
For this model, the value flux associated with the downloading of text is greater than that
of downloading the associated graphics. Fig. 7(b) shows a model that considers a finer-
grained decomposition, considering the diminishing returns associated with progressively
fetching additional material in terms of serial screenfuls of text and graphics.

Let us consider prefetching based on utility functions modeled by piecewise-linear
functions with decreasing rate. In practice, we allow software designers or users to specify
the size of the local cache or the minimal flux required to continue prefetching. To assess
value, we assume that the value of prefetching the total content for each document I is
1.0, and that the value derived from each component (e.g., successive text or graphics
components) increases linearly with the portion of the component as specified by the utility
model. Let us assume that the size of a component (e.g., the first screenful of text) is
B(component) bytes and that the value derived from the component ranges linearly from
0 for no content fetched to a subutility, u(component), for all of that component. Given a
transmission rate of R baud, the EVP flux associated with downloading any component
associated with a segment in the piecewise-linear concave value function is:

ψ(segment i)= u( component i)

B(component i)
p(I |E)R. (20)

Fig. 7. (a) A piecewise-linear utility model for having immediate access to partial content where the flux of
downloading text is greater than that of downloading associated graphics. (b) Finer-grained piecewise-linear
model considering the diminishing returns in value of text and graphics displayed on progressively later screenfuls
of content.
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Prefetching policies that maximize expected utility for this utility model, described in
Section 4.5, take as input quantitative or qualitative information about the likelihoods of
the next documents accessed when such information is available. The prefetching policies
do not require highly accurate probabilities. As we discussed earlier, the policies apply to
probabilistic information available at any level of resolution. However, the policies grow
in value with increases in the accuracy of inferred probabilities that a user will access
documents I in a session.

We have explored several approaches to estimating the p(I | E) for driving continual-
computation policies for prefetching. Central in this task is the learning or construction of
probabilistic user models that can be harnessed to infer the probabilities of next access via
considering such observations as the search context, a user’s browsing behavior, nature and
content of documents recently visited, and the link structure of these documents. There has
been growing experience with the use of Bayesian models of the goals and needs of users
as they work with software applications [2,18,42]. Browsing actions with relevance to the
probability of the next access include the length of time of a dwell on the current page
following a new access or scroll, the dwell or access history, pattern and direction of scroll,
and the mouse cursor position and patterns of motion. We have constructed such models
via manual assessment techniques as well as through methods for learning probabilistic
models from data. We have also employed the output of recommendation systems that
may be employed during browsing. Recommendation systems include interest detection
systems employing text similarity [53] and collaborative-filtering methods that identify
articles of potential interest given an analysis of multiple users’ activities [10,57].

Beyond expressive Bayesian models that consider user activity, interests, and link
structure, we have also explored the power of using simpler statistical models of document
access based on the consideration of server logs. We performed experiments from data
about user activity gathered from servers to probe the promise of continual computation
policies for prefetching. A set of studies centered on learning a Markov model of page
accesses from anonymous user log data to generate the probability that a user will access
documents in a session given the current document being reviewed.

Let us consider a representative statistical analysis that leverages information obtained
from a log file of anonymous user activity accessed from the MSNBC Internet site for news

Fig. 8. Analysis of prefetching using a Markov model built from a training data from an MSNBC internet server.
The graph displays the probability of content from the next document accessed being in the cache as a function
of the number of documents prefetched.
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and information. We processed this file to construct a Markov model of the probability,
p(I |current document), for all pages in the log. The training data for this data set consists
of 95,000 transitions among pages. For each page in the training set, the probability of a
transition to other pages is computed by looking at all pages that had been visited next by
users. The learned Markov transition probabilities provide the likelihood of users accessing
the next page, and can be used to compute the probability of different sequences of pages.

Fig. 8 displays an analysis of the value of prefetching activity for the MSNBC statistical
analysis on a test set of 6,000 transitions gathered from the server. If we consider
documents as having identical utility models, and employ the ideal continual computation
policy to fetch documents we obtain a 0.5 probability of having content in the cache for the
next accessed if we prefetch content from approximately fifteen documents during recent
idle time. This analysis indicates that the expected latencies are halved for this quantity of
cached content. The number of documents and completeness of the content in the cache,
the idle time required to generate the cache, and the size of the increase in expected value
associated with such prefetching activity depends on the details of the specific utility model
employed.

Beyond applications in accessing traditional web pages, the principles of continual
computation can be leveraged in richer browsing experiences that provide users with the
ability to navigate through high-fidelity two- and three-dimensional media. We have been
exploring the use of statistical information on patterns of navigation to forecast future
positions and trajectories from the current and recent history of navigational behavior—and
using such forecasts to guide the proactive caching of media. Patterns of navigation vary
depending on the application, and can be characterized in terms of probability distributions

Fig. 9. Opportunities for employing continual computation include the proactive caching of media transmitted
over limited bandwidth channels given forecasts of the likelihood of alternative future trajectories, based on
recent navigations.
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over future views conditioned on recent activity. In some applications, navigation occurs
in the form of large, circling moves over broad views, followed by a pattern of drilling
down for detailed views and local corrections proximal to target locations. For example,
the browsing of imagery from a geographical database of satellite data involves patterns
of browsing at a highly zoomed-out perspective, refining a coarse position of interest, and
converging on target detailed locations of interest. Other patterns are seen during the review
of content allowing walkthroughs or rotations through virtual three-dimensional spaces. As
highlighted graphically in Fig. 9, probability distributions over a user’s future trajectories,
based on recent navigations through visual media, can be harnessed to provide guidance
to continual computation policies, so as to prefetch content with bandwidth that comes
available during an interactive session.

12. Related work on precomputation

Research within the Artificial Intelligence community on reasoning under bounded
resources has focused largely on real-time problem solving. Nevertheless, researchers have
explored the value of offline analysis and precomputation on several fronts. Prior efforts
include work on real-time planning, knowledge compilation, and learning.

Greenwald and Dean [29,30] explored the challenges of harnessing offline and real-
time computation in building response planning models for Markov decision processes
under time constraints. The work pursued optimizations for more general situations of idle
and real-time computation, focusing in part on issues faced with integrating reasoning
systems that perform problem solving under significantly different time requirements.
There have been a number of studies of offline reasoning for compilation of problem
solving. Research on compilation spans challenges in decision making, theorem proving,
and learning. In the realm of action under uncertainty, Heckerman, et al. investigated
methods for the optimal compilation of actions given a finite quantity of memory [35].
Horsch and Poole explored the offline construction and incremental refinement of trees
representing decision policies for real-time action [39]. In related work, Horvitz explored
issues and opportunities with the ideal precomputation and caching of platform results—
partial solutions to potential future real-time domain-level and metareasoning problems—
to enhance the overall performance of a system [47,49]. Zilberstein and Russell have
explored the offline compilation of compositions of flexible algorithms in the context of
planning, developing methods for generating sequences of stretches of partial computation
to optimize the value of computation [68].

There has been a rich body of work in the offline compilation of general theories to
enhance the efficiency of real-time queries [13]. Representative work in this arena includes
that of Kautz and Selman, centering on the development of preprocessing techniques
that compile propositional logical theories into Horn theories that approximate the initial
information [65]. In the work, compilation procedures translate propositional theories
into a syntactic class which guarantees polynomial-time inference for future queries.
In related work, Moses and Tennenholtz described offline procedures for modifying a
knowledge base. They introduce restrictions to a query language to yield polynomial
real-time inference [55]. In a generalization of some of the earlier work on compilation,
Khardon and Roth examine the situation of a system spending offline effort in learning
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about the nature of problem solving to enhance run-time competency [52]. In this work,
learning procedures are employed during “grace periods" providing agents with the ability
to incrementally construct a representation that increases the efficiency of handling queries
expected in the environment.

Beyond artificial intelligence, precomputation methods have been explored in several
computer science subdisciplines including operating systems, languages, databases, and
compilers. The phrases speculative execution, speculative computation, and optimistic
computation have been used in the systems and compilers arena to refer to procedures
for precomputation centering on the execution of instructions that are not yet known to be
required for a specific computation [14–16,23,25,67].

Precomputation methods in the computer systems community typically center on
heuristic policies and empirical studies. Systems research on speculative execution
includes the extension of computer languages and compilers with handcrafted procedures
and automated techniques that create program code with the ability to compute values
for multiple branches of instructions in potential windows of resource availability [12,
37,56]. The phrase value prediction has been used to describe a family of approaches to
speculative execution centering on executing instructions before its inputs are available
by guessing input values [14]. Such speculative execution of instructions can serve to
break flow dependencies among instructions, enabling systems to exceed the bounds on
performance based on data dependencies. Value prediction strategies typically include
machinery for checking the actual values of variables downstream to verify that values
were predicted correctly, and, if not, for performing a re-execution of instructions with the
correct values. There is typically a cost to being wrong and a number of methods have been
proposed to predicting value, including profiling the frequency of values of operands and
leveraging notions of temporal locality to predict the repetition of values.

Speculative execution tasks include methods for proactively handling and making
available stored data. Researchers have explored methods for loading data based on
anticipated data references [58]. Moving into the realm of database research, ongoing
efforts have been focused on increasing the real-time responsivity of database systems
to queries by precomputing a most appropriate set of materialized views and indexes based
on an analysis of the recent workload on a database system [1,17,31].

13. Toward ubiquitous continual computation

Continual computation shows promise for enhancing solutions to precomputation
challenges that have been explored in several areas of computer science, including
artificial intelligence, computer systems, and databases. There are numerous opportunities
for modifying heuristic precomputation policies with continual computation policies, by
taking advantage of coarse estimates of likelihood and the value of computation.

Beyond the effective leveraging of periods of idle time in research on the foundations
of reasoning or on the fine structure of resource allocation in computer systems,
continual computation can provide value in enhancing the efficiency of higher-level
computational services in personal computing and Internet applications. Numerous
interactive applications are characterized by intermittent bursts of computational effort
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against a background of relatively long periods of idle time associated with users reflecting
about action, or reviewing or inputting information. Regularities in the probabilistic
structure of computer-human collaboration coupled with the relatively long periods of
idle time that come with human cognition and deliberation, provide ripe opportunities for
leveraging principles of continual computation.

Special formulations of continual computation might be explicitly aimed at predicting
and caching responses to specific classes of problems, such as potential forthcoming
computational bottlenecks. The value of employing continual computation to guide
proactive planning to avoid such bottlenecks is framed by the results of research
on harnessing probabilistic bottleneck diagnostic models [9]. Such models consider
a set of performance indicators, software applications being used, and components
of computational systems to generate probability distributions over different kinds of
bottlenecks. They can also be harnessed in predicting the value of additional memory,
computing, and networking resources.

Challenges with implementing continual computation include the development of
efficient procedures for enumerating future instances and for estimating the value of
computation and the probabilities associated with those instances. As we have seen,
some applications, such as diagnostic reasoning, generate valuable probabilities of future
problem instances in the course of their normal operation. However, in most cases,
innovation with continual computation will hinge on the development of means for
efficiently learning, accessing, or forecasting the likelihood of future problems.

There are opportunities for extending continual computation to direct precomputation
at varying temporal granularities over the lifetime of systems by considering specific
families of probabilistic dependency among problem instances. As another direction, rather
than considering partial results as linked to specific problem instances, it is feasible that
solutions to distinct problem instance might share some fundamental structure that can
be precomputed and cached as partial results used in responding to multiple problem
instances. Methods for noting and exploiting such shared problem structure may have
significant payoffs.

Another area for future research is the study of risk preference and precomputation. We
have taken an expected value perspective in developing policies. There is opportunity for
introducing machinery for reasoning about uncertainties about probabilities of problem
instances and precomputation profiles, and seeking to minimize the risks in computational
decision making, potentially leveraging portfolio selection techniques that explicitly
consider risk preference and that seek to identify efficient frontiers in the space of
expectation and risk [54].

More fundamentally, the pursuit of continual computation can provide a window
into intelligence, framing key questions and research directions on the construction of
computing systems that have the ability to make the best use of constrained architectures
and limited resources [47,60]. As an example, if the estimation of EVP flux for
an application requires significant computation, a reasoning system may benefit by
deliberating about the partition of resources among multiple activities, including the
amount of effort to apply to the analysis of continual computation. Seeking to optimize
the partition of resources among computation, precomputation, and deliberation about
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continual computation poses a number of interesting issues with reasoning, metareasoning,
and compilation under the constraints imposed by architecture and resources.

14. Summary

We presented continual-computation policies for harnessing intermittently available
resources to enhance the future performance of computing systems. We focused on the
identification of policies that leverage information about the likelihood of future problem
instances. We considered procedures for minimizing delays and for maximizing the quality
of the responses to forthcoming problems. We explored several families of utility models
describing the value of partial results and derived ideal policies for guiding precomputation
with local decisions for these cases. After reviewing principles, we presented illustrative
applications of continual computation.

Continuing research on continual computation promises to enhance the value of
computational systems and to bolster our understanding of problem solving under limited
and varying resources. Future research directions highlighted by this work include
developing extensions for considering policies for handling general sequences of problems
over time, for considering multiple levels of temporal granularity, effectively managing
memory for caching, deliberating about the likelihoods of future challenges and the value
of computation, and for taking into consideration notions of risk preference for handling
the case of uncertainty about probabilities and the value of computation.
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