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Abstract

The proliferation of electronic health records (EHRs) frames opportunities for using ma-
chine learning to build models that help healthcare providers improve patient outcomes.
However, building useful risk stratification models presents many technical challenges in-
cluding the large number of factors (both intrinsic and extrinsic) influencing a patient’s
risk of an adverse outcome and the inherent evolution of that risk over time. We address
these challenges in the context of learning a risk stratification model for predicting which
patients are at risk of acquiring a Clostridium difficile infection (CDI). We take a novel
data-centric approach, leveraging the contents of EHRs from nearly 50,000 hospital ad-
missions. We show how, by adapting techniques from multitask learning, we can learn
models for patient risk stratification with unprecedented classification performance. Our
model, based on thousands of variables, both time-varying and time-invariant, changes
over the course of a patient admission. Applied to a held out set of approximately 25,000
patient admissions, we achieve an area under the receiver operating characteristic curve of
0.81 (95% CI 0.78-0.84). The model has been integrated into the health record system at a
large hospital in the US, and can be used to produce daily risk estimates for each inpatient.
While more complex than traditional risk stratification methods, the widespread develop-
ment and use of such data-driven models could ultimately enable cost-effective, targeted
prevention strategies that lead to better patient outcomes.

Keywords: risk stratification, time-varying coefficients, multitask learning, Clostridium
difficile, healthcare-associated infections

1. Introduction

Over recent years, there has been enormous growth in 1) our capacity to gather clinically
relevant data and 2) the availability of such data sets. The collection of these data, in
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particular electronic health records (EHRs), holds out the promise of using machine learning
to build models that can be harnessed to improve patient outcomes. Transforming patient
data into actionable knowledge presents a barrage of pragmatic and technical challenges.
But if we are successful in addressing these challenges, the knowledge embedded in these
data has the potential to revolutionize clinical medicine.

One way in which these data can be leveraged is in the development of accurate data-
driven models for predicting potentially avoidable adverse outcomes and using such pre-
dictions to guide interventions aimed at reducing the probability of these outcomes. The
hypothesis is that we can extract from the data generalizable information that can help
accurately identify a patient’s future pathological states. If pathologies are predicted far
enough in advance, then it may be possible for healthcare workers to intervene. Such
targeted interventions could, in turn, lead to better patient outcomes.

In recent years, there has been a significant amount of research effort devoted to using
clinical data to predict patient outcomes (Shoeb and Guttag, 2010; Syed and Rubinfeld,
2010; Syed et al., 2011; Chia et al., 2012; Saria et al., 2010; Saeed et al., 2011; Kleinberg and
Hripcsak, 2011; Aboukhalil et al., 2008; Kansagara et al., 2011). We focus on the specific
task of predicting which patients in a hospital will acquire an infection with Clostridium
difficile (C. difficile), a largely preventable adverse outcome (Yokoe et al., 2008). C. difficile
is a type of bacteria that takes over a patient’s gut when normal flora get wiped out (often
from receipt of antimicrobials). C. difficile infection (CDI) can lead to severe diarrhea and
intestinal diseases (e.g., colitis), or even death. The infection is often treated with specific
antimicrobials: oral vancomycin and metronidazole (and less frequently, fidaxomicin). How-
ever, it is estimated that approximately 20% of cases relapse within 60 days (Pépin et al.,
2005). The incidence of CDI in the US is estimated at 200,000 cases per year (Dubberke
et al., 2009); this is on par with the number of new cases of invasive breast cancer discovered
each year in the US (DeSantis et al., 2014).

Infection with C. difficile is a type of healthcare-associated infection (HAI). HAIs are a
serious problem in healthcare facilities across the world. It is estimated that, on any given
day, HAIs affect approximately 1 in every 25 inpatients in US acute care hospitals (Magill
et al., 2014). In addition to C. difficile, other common HAIs include ventilator-associated
pneumonia, surgical site infection, and infections with methicillin-resistant Staphylococcus
aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Though many risk factors
are well-known (e.g., healthcare-associated exposure, age, underlying disease, etc.), HAIs
continue to be a significant problem throughout the world (Klevens et al., 2007). In recent
years there have been numerous articles citing our inability to prevent HAIs (Miller et al.,
2011; Umscheid et al., 2011; Sievert et al., 2013). We hypothesize that one of the reasons
HAIs remain so stubbornly prevalent is because we lack an effective clinical tool for accu-
rately measuring patient risk. In this work, we chose to focus on infections with C. difficile,
one of the most prevalent HAIs (Miller et al., 2011).

We take a data-centric approach to the problem of developing a model to predict a
patient’s daily risk of acquiring an infection with C. difficile. We leverage the contents of
EHRs from over 50,000 patient admissions from a single hospital. These clinical data contain
information regarding medications, procedures, in-hospital locations, healthcare staff, lab
results, measurements of vitals, patient demographics, patient history and admission details.
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We seek a mapping from this information describing a patient to an estimate of the patient’s
probability of acquiring an infection.

Automated patient risk stratification, based on the contents of the patient’s EHR, can
serve several purposes. Firstly, risk-stratification models can help clinicians match high-risk
patients with the appropriate interventions, monitoring policies, or therapies. In the ab-
sence of effective risk stratification, widespread implementation of known interventions (e.g.,
isolating patients or performing specialized analyses of antibiotic regimens) is prohibitively
expensive. Secondly, data-driven models can help generate hypotheses regarding potential
risk factors, in turn improving our understanding of the disease. For example, the model
could identify “hot-spots” within a hospital that could benefit from additional environmen-
tal cleanings. The construction of a predictive model can also help to frame new scientific
hypotheses through the identification of discriminatory observations. Such insights can lead
to the pursuit and confirmation of causal relationships. Thirdly, such models could aid in
designing more efficient clinical trials by identifying a study population at higher risk for
disease, increasing the fraction of patients expected to test positive in the trial. This could
significantly reduce the cost of a clinical trial without compromising the statistical power
of the study.

Learning accurate risk-stratification models from EHR data presents a number of tech-
nical challenges. Two main issues we focus on in our work include the high dimensionality
of the problem and the complex temporal dependencies among the variables. There can
be thousands of variables representing each day of a patient admission and it is likely that
many of these variables affect a patient’s risk of CDI. Moreover, many of these variables
change over time. These time-varying data suggest that as a patient spends time in the
hospital, his/her actual risk of CDI will vary. Furthermore, how these variables affect risk
is likely to change over time. Recent efforts on building models for identifying patients at
high risk of acquiring a CDI have ignored these issues. Prior work on risk-stratification
models for CDI has centered on the consideration of a small number of risk factors selected
by clinical experts and time-invariant parameters.

Our hospital-specific approach to patient risk stratification for CDI, produces daily es-
timates of patient risk. The novel aspects of our work and our main contributions are
outlined as follows:

• We move beyond known risk factors to leverage the entire structured contents of the
EHR. Our model is based on thousands of extracted binary variables, many of which
are hospital-specific (e.g., the locations of patient rooms within the hospital).

• We include both time-varying and time-invariant variables and we explicitly consider
the evolution of patient risk during admission, when estimating current risk.

• We develop a novel multitask learning approach to modeling the time-varying effects
of risk factors, based on the domain adaptation techniques presented in Daumé III
(2007).

• We propose an evaluation scheme that is representative of how the model will be
applied in practice. In contrast to previous work, we do not evaluate how our model
performs at a single point in time, but rather how the model performs when applied
to each day of a patient’s admission.
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When tested on a holdout set consisting of 24,399 patient admissions from a single
year, our proposed model achieved an area under the receiver operating characteristic curve
(AUROC) of 0.81 (95%CI 0.78-0.84) and consistently outperformed a baseline model with
time-invariant coefficients, for patients with longer risk periods. We have shown that our
algorithm can be integrated into the health record system of a hospital and can be used to
automatically calculate daily probabilities of risk of CDI for every adult inpatient. These
estimates could in turn be used for the selective targeting of high-risk patients with specific
interventions that could lead to changes in clinical practice and ultimately a reduction
in the incidence of CDI and HAIs. Beyond HAIs, we believe the multitask approach for
learning the time-dependent structure of risk factors is a promising methodology for building
predicting models for other adverse outcomes.

2. Background and Related Work

In previous work, risk-stratification models for CDI considered no more than a dozen risk
factors identified by experts and many of these risk factors pertained to time-invariant
features (i.e., observations that do not change over the course of the hospitalization) and
researchers ignored changes in patient risk over time (Tanner et al., 2009; Dubberke et al.,
2011; Garey et al., 2008; Krapohl, 2011). In our work, we have shown how leveraging the
entire structured contents of the EHR leads to significantly better predictions compared to
a model based solely on a set of known risk factors easily extracted from the EHR (Wiens
et al., 2014). Moreover, we have incorporated both time-varying (e.g., current medications)
and time-invariant (e.g., gender) risk factors into the model. Dubberke et al. (2011) also
consider a risk prediction model based on both variables collected at the time of admission
and throughout the admission. However, they ignore any trend in patient risk. In contrast,
we have investigated different methods for incorporating the evolution of patient risk into
the current risk estimate, transforming the problem into a time-series classification task
(Wiens et al., 2012a). These extensions lead to significant improvements in patient risk
stratification.

While our previous work has touched on time-varying variables, to date, risk strati-
fication models for CDI have only considered time-invariant model parameters. That is,
although the patient changes over time, and so does the estimate of risk, the models used
to compute patient risk do not. This approach does not allow the relative importance of
risk factors to change over time as the patient spends more time the hospital. Models
to date have not explicitly considered the time-dependence of such factors as a patient’s
susceptibility and exposure over time. We argue that, in addition to changes in patient
state and hospital conditions, the relative importance of risk factors may change during
an admission. For example, the important of evidence drawn from a patient’s history may
diminish as the patient spends more time in the hospital. We propose a methodology that
can capture and represent such rich temporal dynamics of the relevance of risk factors in
real-world healthcare settings.

Models with time-varying parameters have been studied in other contexts like survival
analysis (Fan and Zhang, 2008). Over the years, standard approaches to survival analysis,
like Cox proportional hazards, have been extended to include time-dependent parameters
(Hastie and Tibshirani, 1993). Extensions typically involve the addition of interaction terms
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between features and time-varying functions (Gray, 1992; Murphy and Sen, 1991; Zucker and
Karr, 1990; Tian et al., 2005; Sun et al., 2009). In many cases, the user must specify these
functions. Researchers have developed non-parametric extensions, but these methods can
be computationally inefficient for large, high-dimensional data sets. In practice, researchers
often end up partitioning time into intervals and analyze each time period with a simple
model. Our proposed approach is similar in the sense that we break the problem up into
multiple tasks. However, instead of learning the models independently, we propose learning
the models jointly using a multitask learning (MTL) framework.

MTL is a popular branch of machine learning that leverages the intrinsic relatedness
among different tasks (Caruana, 1997). It has been studied extensively in many different
applications, including healthcare (Caruana, 1996). As an example, Zhou et al. (2014) em-
ploy multitask learning in a patient risk stratification context for handling missing features
values. In other work, (Zhou et al., 2011) employed an MTL framework in their work on
Alzheimer’s disease progression, centering on the prediction of the cognitive functioning
of patients at different times in the future. They consider each time point as a different
regression task and learn the tasks jointly. The authors employ a temporal group LASSO
regularization framework, which ensures that only a small subset of the variables are cho-
sen while penalizing large deviations of predictions at neighboring time points. Similarly,
we treat each time point of prediction as a different task. However, instead of predicting
multiple points into the future based only on the covariates at baseline, we predict risk each
day based on time-varying covariates. In our application, a patient’s risk of CDI is affected
by several external risk factors that can change over the course of the hospitalization e.g.,
exposure to disease. We incorporate these changes at each time point, since ignoring them
is likely to lead to inaccurate predictions.

3. Study Population

We considered all adult inpatient admissions to a large private hospital in the US over a
two year period. The statistical analysis of retrospective medical records was approved by
the Institutional Review Board of the Office of Research Integrity of the hospital network’s

Study Population
(n=49,006)

Age, median (IQR) 60 (46-73)
Female gender, % 55.25
Hospital Service (%)

medicine 47.85
cardiology 11.98
surgery 9.60
obstetrics 8.12
psychiatry 5.4

LOS (days), median (IQR) 5.4 (3.8-4.4)
CDI (%)

current visit 1.02
1-year history 1.11
any history 1.54

Table 1: Demographics of our study population.
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research institute. We considered patients admitted on or after 2011-04-12 and discharged
on or before 2013-04-12 (n=73,454). We exclude admissions in which the patient was
discharged or tested positive for C. difficile before the end of the third day (n=24,389) and
admissions for which the patient had a positive test result for C. difficile within the 14
days preceding the current admission (n=59). This resulted in 49,006 unique admissions.
These criteria exclude many predictable low-risk patients with shorter stays, and focus on
those patients who we believe acquire the infection during the current hospital admission
(as opposed to those who are already infected at the time of admission). Our final study
population is described in Table 1.

CDI cases are typically defined as healthcare-associated if they occur within 48 hours
of the time of admission. In our work, we exclude patients who test positive before the
end of the third calendar day of admission. By defining the cutoff as the end of the third
calendar day, we ensure that the minimum cutoff of 48 hours is achieved, while allowing
for simultaneous predictions for every patient (at the end of the day). A uniform time of
prediction makes sense from a clinical perspective, since it streamlines the risk-stratification
process. Most recently, the Centers for Disease Control and Prevention (CDC) updated their
definition of HAIs to include positive test results that occur on the third calendar day of
admission (CDC, 2015). While we do not consider these cases here, this work could easily
be extended to do so.

4. Methods

In this section, we begin with the problem setup and define notation that will be used
throughout the paper. We then describe the feature extraction and learning algorithms
used to train the risk prediction model.

4.1 Problem Setup & Notation

The task at hand is to learn a model to accurately predict an inpatient’s risk of acquiring
CDI during the current hospitalization. Predictions are made daily; we consider time at
the granularity of a day, and each day t of an admission is represented by a d dimensional
binary feature vector: xt ∈ {0, 1}d. While we focus on a binary representation of the data,
we incorporate both continuous and discrete variables as discussed in Section 4.2. Since
each admission in our study population consists of multiple days, the ith patient admission is

represented by a series of feature vectors: (x
(i)
1 ,x

(i)
2 , ...,x

(i)
mi), where mi varies across patient

admissions since the length of a visit varies (note: mi ≥ 3 in our study population). We
use boldface notation to denote vectors.

In addition to a series of feature vectors, each patient admission is also associated with a
binary label y ∈ {+1,−1}. Each day of a visit in which the patient eventually tests positive
is labeled +1 and −1 otherwise. Thus each patient admission p(i) consists of mi (feature
vector, label) pairs:

p(i) = {(x(i)
t , y

(i)
t )}mi

t=1

For patients who do not test positive, mi is equal to one less than the length of the
visit in calendar days. We do not consider the day of discharge in our analysis since by the
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time a patient is discharged the prediction is meaningless. For patients who eventually test
positive, we consider a patient admission up to and including the day before the day of the
positive test result. Finally, our data set is defined as:

D = {p(i)}ni=1

where n represents the number of unique patient admissions in the data set. Note that a
patient may be represented multiple times in our data set if he/she has multiple admissions
during the time period we consider.

Data Description
Admission
details

Admission details (e.g., date and time of admission, date and time of discharge, and type of visit)
and other information pertaining to the admission such as the financial class code, the source of the
admission, the hospital service, and the attending doctor are extracted for each patient admission.

Patient de-
mographics

Information pertaining to patient demographics such as age at the time of admission, gender, race,
marital status, and city of residence are extracted. Aside from age, all data in this table are
categorical.

Laboratory
results

Results pertaining to ordered laboratory tests are extracted. Each entry in the database table
is associated with a patient admission, an observation identifier, an observation value, an obser-
vation time, a reference range (e.g., 120-200 for cholesterol) and an abnormal flag (e.g., H=high,
L=low, C=critical, or empty=normal). We represent time-stamped laboratory results based on
the observation identifier and the associated flag.

Diagnoses Patient diagnoses are encoded using ICD-9 codes (NCHS, 2008). Patient visits can be associated
with multiple ICD-9 codes; in our data the average visit (including outpatient visits) is associated
with two distinct ICD-9 codes. ICD-9 codes, widely used for billing purposes, can get coded well
after a patient is discharged (Iezzoni, 1990). For this reason, we do not use the codes associated
with a patient’s current visit in our model. Instead, we consider only the codes from a patient’s
most recent hospital admission.

Medications Orders for medications are associated with an admission identifier, an 8-digit medication identifier,
and a start/stop time. Each medication identifier is associated with a medication, a dosage and a
form (e.g., in solution). Since the dosage and form are encoded in the 8-digit medication identifier,
we represent patient medications using only this identifier.

Locations For each hospital admission we have time-stamped location data. Location data refer to the
patient’s location within the hospital. Locations are collected at both the unit and the room level.
Using these time-stamped data we can trace a patient’s path through the hospital.

Vitals Each entry in the vitals table corresponds to a visit, an observation identifier (e.g., “BPSYSTOLIC”
for systolic blood pressure), an observation value, a reference range, an abnormal flag, and an
observation timestamp. When extracting information about vitals for a patient we encode the
observations the same way we encode laboratory results, i.e., as a concatenation of the observation
identifier and an abnormal flag (e.g., “BPSYSTOLIC H” for high systolic blood pressure).

Procedures In the EHR, procedures are encoded using both Current Procedural Terminology (CPT) codes
and ICD-9 procedure codes. Each row in the procedures table records a procedure, an admission
identifier, and a procedure timestamp. Since both coding systems are used to describe procedures,
in our analysis we consider both CPT and ICD-9 codes.

Table 2: Relevant information extracted from the EHR.

4.2 Feature and Label Extraction

As Paxton et al. (2013) state, there are many challenges that come with working with EHR
data in research. Addressing these challenges requires careful consideration of the data and
the intended application. Moreover, electronic health information systems will continue
to change and therefore it is important that researchers take this into consideration when
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developing models based on EHR data. In our work these challenges motivated a simple,
flexible, data-driven approach to extracting and representing EHR data.

4.2.1 Data Extraction

We represent each day of a patient’s admission with a single feature vector, xt for t = 1...mi,
composed of both time-invariant features collected at the time of admission and time-
varying features collected over the course of each day. The time-invariant features aim to
capture the baseline state of each patient while the time-varying features capture changes
in patient state during the hospital admission. In the EHR, data are stored across different
tables in several databases. We describe the relevant variables and how they are stored and
extracted from the EHR in Table 2.

Each patient admission (i.e., encounter) is represented by a unique identifier, in ad-
dition each patient is associated with a unique identifier. These unique identifiers allow
us to retrieve information across hospital databases for each admission, and across time
for multiple admissions pertaining to the same patient. For each patient admission in our
study population, we extract knowledge pertaining to the EHR data described above. We
augment the data pertaining to the current admission with data extracted from previous
admissions including diagnoses and medications.

4.2.2 Feature Engineering

The majority of the extracted data pertain to categorical features, e.g., medications or
in-hospital locations. Vitals and laboratory results are also represented using categorical
variables as described in Table 2. This eliminates the need to define our own cutoffs for dis-
cretization, since the cutoffs are encoded directly in the database using “reference ranges.”
Data pertaining to diagnoses were coded as ICD-9 codes, a hierarchical classification sys-
tem with 13,000 unique codes. For our application, we do not expect that this level of
granularity is informative. Diagnostic codes are used largely for billing purposes and are
not timestamped, therefore their utility is limited. Given these limitations we focus on only
diagnostic codes associated with the previous visit, and consider only the highest level of
the codes.

We also consider a small number of continuous and discrete variables (e.g., age and
statistics related to previous hospitalizations). We map all of these data to binary variables
resulting in a high-dimensional feature space. Doing so allows us to later capture some
of the nonlinear relationships that may be present in the data without using a nonlinear
classifier. We discretize all continuous variables (except for age) using cutoffs based on
quintiles from the training data.

From the laboratory data described in Table 2 and the in-hospital location data we
were able to extract information regarding patient exposure to the disease throughout the
hospitalization. Colonization pressure aims to measure the number of patients in a specific
unit of the hospital colonized or infected with a particular disease. We define colonization
pressure as in Wiens et al. (2014) and measure patient exposure over time based on the
patient’s location during the hospital admission. We measure exposure at both the hospital-
wide and unit-wide level.
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We focus on capturing events at the temporal resolution of a day. Thus, we do not
consider the order of events within a single day. For example, we know which medications
were ordered each day but not the temporal ordering of when the medications were taken.
We handle cases where the same variable, e.g., blood pressure, is observed multiple times
during a day by simply including all relevant values that were observed when building the
daily feature vector. For our particular task this resolution suffices, though it may not be
optimal.

4.2.3 Ground Truth

We label each example in our data set as either positive or negative depending on the
laboratory data pertaining to positive stool tests for toxigenic C. difficile, as obtained
during the hospital admission. Patient admissions with a positive test result are labeled
positive in our data and negative otherwise. These laboratory results are time-stamped and
thus we also noted the calendar day in which the patient tested positive. In the data set,
patients are only tested if they exhibit symptoms. Thus, we expect the laboratory results
to be highly sensitive and specific. However, since not all patients are tested every day for
the disease there is a small possibility that some patients may have acquired an infection
and yet were never tested.

4.3 Learning to Predict Daily Risk

We produce daily estimates of patient risk using a two-stage process as in Wiens et al.
(2012a). However, in contrast to our previous work, our model in the first stage is not
static but varies over the course of the hospitalization, incorporating time-varying model
parameters. The first stage produces initial estimates of daily risk and the second stage
incorporates risk estimates on previous days in order to capture the variation in risk over
time. We explain both stages in detail below.

4.3.1 Baseline Approach

Given the set of labeled feature vectors D = {(x(i)
t , y

(i)
t )mi

t=1}ni=1 representing each day of a
patient admission we can learn a classifier θ ∈ Rd, linear in x, using L2-regularized logistic
regression:

min
θ

1

2
θT θ + C

n∑
i=1

mi∑
t=1

log(1 + e−y
(i)
t θTx

(i)
t ) (1)

Once we have learned θ we can produce an initial estimate of the ith patient’s risk on

day t, ŷ
(i)
t ∈ [0, 1]:

ŷ
(i)
t =

1

1 + e(−θ
Tx

(i)
t )

(2)

This formulation simply pools all training examples together and learns a single model,
θ ignoring the index t. As a patient spends additional time in the hospital, we expect the
factors contributing to patient risk to change. Therefore, we extend the learning framework
to produce a model that changes as the patient spends more time in the hospital.
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4.3.2 Proposed Approach

We divide the problem into T learning tasks, splittingD into separate tasks: D1,D2,D3, ...,DT .
Where the task Dj is the task associated with the τj time period for j = 1, 2, 3, ..., T . The
data are split into different tasks according to t, the index of the day of the visit, such that
each task contains roughly an equal number of examples.

We could learn a separate model for each task independently of the others, but in doing
so we would be limiting ourselves to using only 1

T of the original training data available.
Moreover, the tasks themselves are related in time and thus are not independent. While
the parameters may vary from one day to another, we do not expect large fluctuations in
time. Therefore, we use a multitask learning framework to leverage the inherent relatedness
among the different tasks and take advantage of the entire corpus of the training data.

We extend the L2-regularized logistic regression framework presented above to incor-
porate multiple tasks. We specifically chose L2 regularization over other regularization
frameworks (e.g., L1) since many factors contributing to the risk of CDI are not well un-
derstood and effective interventions and preventative measures for reducing patient risk are
still being studied. Thus we are more interested in capturing/identifying perhaps novel risk
factors, than selecting a sparse subset. Moreover, given the collinearity present in the data,
there’s a risk that L1 regularization could “select-out” such known risk factors. We want
to be careful that we do not exclude known risk factors in the final model. Even if other
factors that are highly correlated with known risk factors remain in the model, clinicians
are unlikely to use or trust a model that does not consider known risk factors. We employ

domain adaptation techniques from Daumé III (2007), remapping each feature vector x
(i)
t

to a feature vector ∈ {0, 1}d(T+1) using the mapping function Φ(x
(i)
t ):

Φ(x
(i)
t ) = [x

(i)
t , 〈0〉j−1,x

(i)
t , 〈0〉T−j ] ∀ t ∈ τj for j = 1, 2, 3, ..., T

The new feature vectors consist of two copies of the original feature vector, padded with
zeros 0 = [01, 02, 03, ..., 0d]. Here the notation 〈0〉k represents k concatenated copies of the
zero vector 0.

We then learn the regression parameters θ ∈ Rd(T+1) using Equation (1) simply replacing

x
(i)
t with Φ(x

(i)
t ) in the objective function. One can decompose θ into T + 1 vectors each in

Rd, the original dimensionality of the problem, θ = [θ0, θ1, θ2, ..., θT ]. Here, θ0 corresponds
to a vector of shared feature weights since it is based on data from all days, where as θ1 is
based on only data from t ∈ τ1 and so on.

By substituting Φ(x
(i)
t ) for x

(i)
t in Equation (2), the risk of patient i on day t ∈ τj

becomes proportional to (θ0 + θj)
Tx

(i)
t . Writing the function this way shows how learning

the models jointly results in T different models all with a shared component θ0.

θ′j = θ0 + θj for j = 1, 2, 3, ..., T

In general, we can estimate the risk of a new patient day x
(i)
t using Equation 2, but

replacing θ with θ′j , without having to remap the feature vector.
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4.3.3 Temporal Smoothing

Applying the model described above to a patient’s data results in a single estimate of risk

for each day ŷ
(i)
t of a patient’s visit. This estimate is based on both the baseline state of the

patient (as captured by the time-invariant features in x
(i)
t ) and the measured time-varying

variables. In previous work, we showed that this snapshot approach to measuring patient
risk, ignores important information contained in the evolution of patient risk. Thus, we
incorporate risk estimates from previous days using a cumulative moving average. Given

the initial risk estimates, the predicted risk for patient i on day t is calculated as risk
(i)
t =

ŷ1+...+ŷt
t . This biases new estimates toward the estimates from previous days; while large

fluctuations in patient risk in close temporal proximity are possible, they are unlikely. In
earlier work, we considered a formulation based on a weighted average in which days closer
to the current day receive more weight. However, we found these methods did not yield
better estimates than a simple cumulative average (Wiens et al., 2012b). The approach
considered here is equivalent to the RP+Average approach described in Wiens et al. (2012a),
the simplest of the investigated approaches that significantly outperformed the snapshot
approach.

4.4 Risk Stratification Model Evaluation - Daily Predictions

In the clinical literature, risk stratification models are often evaluated at a single point in
time e.g., two days before an index event or at the time of admission (Tanner et al., 2009;
Dubberke et al., 2011). Evaluating a model’s ability to risk stratify patients at the time
of admission is fine. However, a patient’s risk is likely to change over the course of the
hospitalization. Evaluating a model at a specific point in time, e.g., n days before an index
event, brings to the fore two additional issues. First, such an evaluation requires you to
define an index event for negative patients. For risk stratification for CDI the index event
is often defined as the first positive test result for patients who test positive and the day
of discharge otherwise. However, the task of distinguishing between patients about to test
positive for CDI and patients about to be discharged from the hospital is relatively easy
since the patients tend to look quite different in the feature space. More importantly, the
ability to distinguish such patients is of little clinical utility. Second, evaluating a model
at a specific point in time does not yield an accurate representation of how the model will
perform in a clinical setting. While such an evaluation scheme is useful for comparing
classifier performance, in practice, clinicians have no way of knowing when a patient is n
days from an index event.

In a clinical setting, we expect to apply the risk stratification model to each day of a
patient’s visit. This results in multiple predictions for each patient admission, one corre-
sponding to each day of the admission. We consider a model evaluation scheme that takes
all of these predictions into consideration, yet still yields a single measure of performance.

One could imagine a validation scheme in which the performance of a classifier is evalu-
ated for each day independently. While complete, this evaluation still lacks relevance from
a clinical perspective since it is not clear how to interpret the utility of a classifier that
correctly classifies a patient m days out of a total of n days. Here, we consider an evalu-
ation scheme that is driven by the use case of the model. We assume that once a patient
is identified as high-risk s/he will receive some form of an intervention (e.g., relocated to
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a private room or special stewardship of the patient’s antibiotic protocol) and that this
intervention will last for a certain period of time determined by the physicians treating the
patient (e.g., 10 days or for the remainder of the visit). Thus, while the predicted risk
remains low, we continue making daily predictions, each day deciding whether or not to
intervene. However, once the predicted risk exceeds some threshold, we classify the patient
as high-risk and discontinue making predictions, since the question of whether or not to
intervene becomes irrelevant once physicians have intervened.

Thus, while the model’s daily predictions are allowed to fluctuate (from low to high and
high to low), when evaluating the model we choose a single decision threshold. We apply
this decision threshold to each day of a patient’s visit, up to the day before a positive test
result is observed or the day before the day of discharge. If the patient’s daily estimated
risk ever exceeds the decision threshold they are classified as high risk, otherwise they are
classified as low risk. This mimics the primary way we expect the model to be used in
practice. By taking the maximum prediction for each patient and sweeping over different
values of the decision threshold, we can evaluate the model in terms of the area under
the receiver operating characteristic curve (AUROC). The AUROC alone is not enough to
quantify the performance of the model; since there is high class-imbalance, we also consider
the area under the precision recall curve (AUPR). We estimate 95% confidence intervals for
these performance measures by applying a bootstrap method. Finally, in addition to these
performance metrics, we also evaluate how far in advance we correctly identify positive
cases. This is an important measure of performance that is often overlooked, but has
crucial implication regarding the utility of the model in real-world clinical practice. The
earlier we can identify a patient as high-risk, the earlier we can intervene, with the goal of
reducing the likelihood of an adverse outcome for a patient and also reducing the spread of
the pathogen.

5. Experiments and Results

Employing the methods described in the previous section, we learned and validated a risk
stratification model for identifying inpatients at high-risk of acquiring an infection with C.
difficile throughout their hospital admissions using data from our study population.

5.1 Learning the Risk Model

Our feature extraction yielded close to 10,000 binary variables for each patient day. To re-
duce the dimensionality, we filter out features that do not occur in at least 1% of the training
set. This resulted in a lower dimensional feature vector, where each day is represented by a
vector of 905 binary variables. The remaining variables are presented in Table 3. As shown
in Table 3 the majority of the features pertain to laboratory results and medications, both
time-varying variables.

We split the data into a training set and a holdout set based on time, training on data
from the first year, and validating our model on data from the second year. The training
data consisted of patient admissions from 2011-04-12 to 2012-04-11, totaling 190,675 visit
days pertaining to 24,607 unique visits. Within the training data, 258 admissions had a
positive test for C. difficile resulting in 2,608 training days with a positive label. To mitigate
the influence of patients already showing symptoms, we removed patient days corresponding
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Category Feature Name #Binary Features Original Format

Patient History Previous Medications 160 Categorical
Previous Diagnoses 16 Categorical
Number of Hospital Visits (90 days) 3 Continuous
Avg. LOS of Hospital Visits (90 days) 6 Continuous
Total LOS of Hospital Visits (90 days) 6 Continuous
History of C. diff 1 Categorical
1yr History of C. diff 1 Categorical

Patient Demographics Age 5 Continuous
Marital Status 5 Categorical
Race 4 Categorical
Gender 1 Categorical
Financial Class 8 Categorical
City of Residence 13 Categorical

Admission Details Admission Month 12 Categorical
Admission Year 3 Categorical
Admission Type 4 Categorical
Hospital Service 12 Categorical
Admission Source 7 Categorical
Attending Doctor 14 Categorical
Expected Surgery 1 Categorical

Daily Admission Details Laboratory Results 267 Categorical
Medications 274 Categorical
Vitals 24 Categorical
Locations Units/Rooms 38 Categorical
Procedures 4 Categorical
Unit Exposure 6 Continuous
Hospital Exposure 5 Continuous
Day of Admission 5 Continuous

Table 3: High-level description of final features included in the model. The final feature
vector consisted of 905 binary features belonging to four different categories.

to the day of and the day before the positive test result. In addition, when training the
classifier, we randomly subsampled the data such that no patient contributed more than
three days of the data to the training set. This is similar to reweighting samples such that
each patient contributes equally to the overall classifier. If we had not done this, some
patients would have been represented up to 10 times more often than other patients. Given
the small number of positive examples, patients with longer visits could have significantly
biased the classifier. In turn, this could have resulted in overfitting to patients with longer
visits.

We selected the number of tasks T , and the corresponding temporal intervals τj for j =
1, ..., T based on the number of training examples available for each interval. For our data,
this resulted in six distinct tasks, corresponding to six distinct time periods: D1,D2,D3,D4,D5,D6.
We learned a model for each time period using L2-regularized logistic regression and the
multitask learning framework described in Section 4.3.2. To select the hyperparameter C
in (1), we performed repeated five-fold cross validation on the training data, choosing a
setting that maximized the AUROC. The model parameters, i.e., θ, were solved for using
LIBLINEAR (Fan et al., 2008). This resulted in six different models, θ′t ∈ R905:
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θ′t =



θ0 + θ1 : t ∈ [1]
θ0 + θ2 : t ∈ [2]
θ0 + θ3 : t ∈ [3]
θ0 + θ4 : t ∈ [4, 5]
θ0 + θ5 : t ∈ [6, 9]
θ0 + θ6 : t ∈ [10,∞)

θ′t is allowed to deviate from the shared model θ0 based on the data collected during
each time period. Thus, the relative importance of risk factors is allowed to vary over
time. Figure 1 (a) shows the extent to which the weights vary across time. The columns
correspond to the different time periods (i.e., tasks) and the rows correspond to the different
features. The features are sorted in descending order according to their weight on the first
day. The color of each cell is related to the weight of the corresponding feature for the
specified task, normalized by the sum of the absolute value of all weights for that task. All
cells corresponding to features that have high positive weight are red and those with high
negative weight are dark blue. If the relative importance of the weights remains constant
over time, each column would appear identical to the first column (i.e., solid horizontal bands
of color). However, as Figure 1 (a) shows, the relative importance of features changes. Still,
as we expected, we see great deal of continuity in the feature ranking across time periods
as all of the models share a common component.

(a) All features (b) The top ten features

Figure 1: The changing relative importance of features over time. For each time period τj
for j = 1...6 (i.e., task), the features are ranked according to the feature weight for
the task associated with τ1. The color represents the normalized feature weight
for each task.

Figure 1 (b) shows that, even among the top ten features (from θ′1), there are changes in
the relative importance of features over time. In Figure 1 (b) the first two features become
less important over time, while the third feature becomes more important. Table 4 lists the
five features with the greatest positive weight in θ′1 through θ′6. Note that initially the most
important feature is the patient’s one year history of CDI. As a patient spends more time
in the hospital, this feature loses importance relative to the location of the patient in the
hospital.
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Ranking 1 2 3 4 5

θ′1 1 Yr. hist. of CDI Hist. of CDI Daily Units:XX Temp.:High Prev. Meds:Sevelamer
θ′2 1 Yr. hist. of CDI Hist. of CDI Daily Units:XX Temp.:High Service:MED
θ′3 1 Yr. hist. of CDI Hist. of CDI Daily Units:XX Temp.:High Prev. Meds:Sevelamer
θ′4 1 Yr. hist. of CDI Hist. of CDI Daily Units:XX Temp.:High Mean Platelet Vol.:normal
θ′5 Meds: Pantoprazole 1 Yr. hist. of CDI Daily Units:XX Hist. of CDI Mean Platelet Vol.:normal
θ′6 Daily Units:XX 1 Yr. Hist. of CDI Temp.:High Hist. of CDI Service:MED

Table 4: We show features with greatest weight for tasks 1 through 6, using color to high-
light certain trends.

In Table 5, we note the 25 features with the greatest weight according to the shared
model i.e., θ0. We are not surprised that patient history of CDI appears at the top of
this list. The medications that appear in Table 5 include drugs administered to patients
receiving kidney dialysis, drugs for the treatment of high blood pressure and heart disease,
and proton pump inhibitors. When interpreting these weights, it is important to keep in
mind that many of the features in our model are highly correlated. These features may be
directly or indirectly linked with an increased risk of CDI. Further analysis could generate
hypotheses about causal relationships that could be tested in a randomized controlled trial.

Rank Feature Index Feature Name Feature Description Shared Weight

1 905 OneYear History positive test for toxigenic C. diff in past year 0.2472
2 904 All History positive test for toxigenic C. diff ever in the past 0.2314
3 124 daily units:XX medicine patient care unit 0.2084
4 427 daily vitals:temporal h temperature oral high 0.1885
5 867 daily meds:63604250 pantoprazole 40mg Inj 0.1508
6 44 v hospital service:MED medicine hospital service 0.1466
7 605 prev meds:63713135 sevelamer 800 mg Tab 0.1418
8 674 daily meds:63715254 vitamin B comp w/C, FA Tab 0.1321
9 234 daily labs:wbc h white blood cell count high 0.1320
10 475 prev meds:63616924 vancomycin 1 gm/250 mL NaCl 0.9% 0.1177
11 269 daily labs:mpv mean platelet volume measured 0.1175
12 433 daily vitals:bgnas oxygen flow rate (nasal cannula) 0.1158
13 418 daily labs:bun h blood urea nitrogen high 0.1094
14 74 attendingdoctornumber:xxxx attending (anonymized) 0.1088
15 615 prev meds:63708390 lisinopril 10 mg Tab 0.1081
16 590 prev meds:63715676 zolpidem 5 mg Tab 0.1077
17 434 daily vitals:tempax temperature axillary 0.1075
18 292 daily labs:k l Potassium Lvl low 0.1059
19 587 prev meds:63715254 vitamin B comp w/C, FA Tab 0.1038
20 591 prev meds:63744403 pharmacy comment 0.1037
21 441 daily vitals:bgpet l end tidal CO2 low 0.1036
22 506 prev meds:63608947 metroNIDAZOLE 500 mg/100 mL 0.9% NaCl 0.1024
23 719 daily meds:63713259 simvastatin 40 mg Tab 0.1007
24 267 daily labs:phos l Phosphorus Lvl low 0.1003
25 688 daily meds:63707897 K phos-Na phos Oral Pwdr 0.0990

Table 5: Features with greatest “shared” weight. Hospital unit and staff identifiers have
been removed.
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5.2 Evaluating the Model

In previous work, risk stratification models have been evaluated at a single point in time.
Here, we employ a more realistic evaluation methodology (as described above). We believe
this evaluation provides a more accurate representation of how the model will perform in a
clinical setting.
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(b) Precision Recall Curve

Figure 2: We plot two performance curves generated by applying the risk stratification
method described in the previous section to the set of held-out patient admissions.
We achieve an AUROC of 0.81 (95%CI 0.78-0.84) and a AUPR of 0.04 (95%CI
0.03-0.05). The 95% CI are represented by the red dashed lines. The performance
of a random classifier is given by the black dashed lines. (A classifier no better
than random achieves an AUROC=0.5 and AUPR=0.01)

We applied the model to the set of patient admissions held out for validation, which
consisted of patient admissions from 2012-04-12 to 2013-04-12 and was composed of 24,399
admissions of which 242 had a positive test result for C. difficile. When validating the
model, we did not subsample the test data as we did with the training data. Each patient
admission in the held out set has at least three daily predictions of risk, since we considered
only patients who were still present in the hospital at the end of the third day. However,
we do not start applying the decision threshold until the end of the third day (given our
exclusion criteria). Also, we do not evaluate the model on the final day of the admission
(the day in which the patient was discharged) as such a prediction would be meaningless for
guiding in-hospital interventions. Recall that the task is to predict a patient’s probability
of acquiring CDI during the current hospitalization and that predictions are made at the
end of the day.

Figure 2 shows the ROC curve, and the precision recall curve for the held out patient
admissions. Applied to the validation data, our model results in an AUROC of 0.81 (95%CI
0.78-0.84) and an area under the precision recall curve (AUPR) of 0.04 (95%CI 0.03-0.05).
Although the AUPR appears low, the performance is significantly better than a baseline
classifier (Precision=0.01), since the incidence of infection is approximately 1% in the study
population.
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Figure 3: Classification performance resulting from a classifier based on the 90th percentile.

To evaluate the ability of our model to distinguish high-risk patients from low-risk pa-
tients in the held out set set of patient admissions, we selected a decision threshold based
on the 90th percentile. We chose this cutoff to limit the number false positives, since CDI
cases are relatively rare. Given this decision threshold, we correctly identify 103 patients
out of 242 as high risk, and achieve a sensitivity of 0.43, a positive predictive value of
0.04, an F-score 0.08, and an odds ratio of 6.67 (confusion matrix TP=103 TN=21,820
FN=139 FP=2337). Lowering the decision threshold will increase the sensitivity and in-
crease the number of false positives. Ultimately, the choice of decision threshold depends
on the expected costs and benefits of the intervention that one intends to apply to high-risk
patients.

Figure 3(a) illustrates how far in advance we can predict positive test results. We note
that in approximately half of the cases correctly identified, we identify cases at least 7 days
in advance of their testing positive for CDI. Figure 3(b) illustrates when patients are testing
positive. While we identify more patients who test positive earlier, the fraction of patients
we correctly identify increases as the length of stay increases.

Finally, in Figure 4, we illustrate the performance of our model (the Multi-Task Joint ap-
proach) compared to that of a model learned by simply pooling all the data (the Single-Task
approach), in terms of the AUROC. In addition, we consider a third approach, Multi-Task
Independent, that also learns multiple models, one for each day, but where the optimiza-
tion is performed independently for each model. Applied to all patients in the held out
set of patient admissions (risk period>3 days), the proposed approach, Multi-Task Joint,
and the Single-Task classifier perform almost identically, with both achieving an AUROC
of 0.81. In contrast, the Multi-Task Independent performs worse, achieving an AUROC of
0.80. We believe this reduction is due to the inability of the method to leverage all of the
data as in the Multi-Task Joint approach. When we divide the patients into subsets based
on their risk period the difference between the Single-Task and Multi-Task approaches be-
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Figure 4: We compare a single-task classifier, where the model is time-invariant, to a mul-
titask classifier where the model varies over time. The difference between the
two classifiers is apparent for those patients who test positive later during the
admission. These are the patients we are more interested in.

comes apparent. For patients with a longer risk period, the Multi-Task approach results
in an improvement in performance over the Single-Task approach. While the difference is
small, it is consistent. This difference is relevant, since the potential to intervene in a timely
manner is greater for patients who test positive later in a visit. Therefore, the ability to
identify such cases accurately is of considerable practical importance.

6. Discussion and Conclusion

In summary, we presented a novel data-driven patient risk stratification model for CDI that
utilizes the entire structured contents of the EHR. The main contributions of our work are
a novel approach to learning time-varying parameters and an evaluation scheme that is
representative of how the model will be applied in practice.

The model provides estimates of patient risk daily based on time-varying parameters.
We propose a multitask learning framework to efficiently learn the time-varying model. By
learning the models jointly, we leverage the inherent relatedness among the different tasks.
We observed changes in the ranking of features over time, suggesting that the proposed
method could be used to further investigate the temporal effects of risk factors over the
course of a hospital admission. These findings may shed new light on the relationship
between risk factors and time, and in turn improve our understanding of the disease.

Furthermore, we demonstrated a consistent improvement in the classification perfor-
mance using our multitask approach over a single-task approach, particularly among pa-
tients with longer risk periods. While consistent, the difference was not significant; this
may be due to the fact that the number of cases with longer risk periods is small. We
have approximately 5,000 visits in the heldout set with a risk period greater than 10 days,
and only a small fraction of those patients end up testing positive. Additionally, in our
formulation, we consider the same decision threshold every day. However, use of a variable
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decision threshold could lead to better results. Furthermore, our results showed a clear
overall improvement when learning the models jointly versus independently. However, on
patients with very long risk periods e.g., greater than 15 days, the independent classifiers
appear to perform slightly better. This may be an indication that the averaging or smooth-
ing effect of the joint optimization approach is perhaps too strong. This may be addressed
by only penalizing differences between successive models. In future work, such models could
be improved by considering additional temporal smoothness constraints.

We proposed a new evaluation scheme motivated by a clinical use case in which the model
is used daily to evaluate patients in the hospital and a decision is made about whether or
not to intervene. Prior to this work, such models have only been evaluated at a single point
in time during a hospital visit (e.g., at the time of admission or n days before the index
event). We argue that evaluating the model over the entire course of the admission is a more
accurate approximation of how the model would be used and would perform in practice.
We also evaluated our final model in terms of how many days in advance we could predict
high-risk cases. In a clinical setting, how far in advance one can predict an infection is as
relevant as traditional performance metrics like sensitivity and specificity. This approach
to evaluation is independent of both the disease and our method of building a classifier.
With the increasing interest in applying machine learning to clinical problems, ensuring
that evaluation criteria are clinically relevant will be of great importance.

In addition, we were careful to split our data temporally, learning on data from one year
and evaluating the model on data from the next year. Over time, hospital populations,
physical layouts, clinical protocols, and staff can change. Furthermore, EHR systems can
change both in terms of what is collected and the precise meanings of variables. Thus, when
evaluating predictive models in medicine, it is important to ensure that all examples in the
training set precede all examples in the set held out for validation. Failure to do this can
produce misleading results since future changes may be captured by the training set. To
this end, we expect the predictive performance of our model will deteriorate over time, if
such changes are not readily incorporated. An important future direction of study is how
such models transfer across time, and best practices for building models that incorporate
not only changes but also take into consideration possible interventions.

The models learned in this work are based on hospital-specific data, and thus may not
generalize to hospitals with very different patient populations or clinical protocols. However,
we expect the methods to generalize beyond this specific hospital. Our data-driven approach
to feature engineering can be applied in straightforward manner to the structured contents
of any hospital database. Such a data-driven approach can readily incorporate hospital-
specific features resulting in more accurate predictive models. Here, we considered only
the structured contents of the electronic health record. Future models, however, could
incorporate features extracted from clinical notes or even genomic data pertaining to the
microbiome of patients.

We focused on developing predictive models for CDI. However, our contributions ex-
tend to building models for other types of healthcare-associated infections and other pa-
tient populations. Once incorporated into the hospital workflow, risk stratification models,
like the one presented here have the potential to reduce the incidence of adverse patient
outcomes. Widespread development and use of such data-driven models promise to enable
cost-effective, targeted prevention strategies that will ultimately improve patient care.
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