
Interactive Optimization for
Steering Machine Classification

Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric Horvitz
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
{akapoor, bongshin, desney, horvitz}@microsoft.com

ABSTRACT
Interest has been growing within HCI on the use of machine
learning and reasoning in applications to classify such hid-
den states as user intentions, based on observations. HCI
researchers with these interests typically have little exper-
tise in machine learning and often employ toolkits as rela-
tively fixed “black boxes” for generating statistical
classifiers. However, attempts to tailor the performance of
classifiers to specific application requirements may require
a more sophisticated understanding and custom-tailoring of
methods. We present ManiMatrix, a system that provides
controls and visualizations that enable system builders to
refine the behavior of classification systems in an intuitive
manner. With ManiMatrix, users directly refine parameters
of a confusion matrix via an interactive cycle of re-
classification and visualization. We present the core me-
thods and evaluate the effectiveness of the approach in a
user study. Results show that users are able to quickly and
effectively modify decision boundaries of classifiers to tai-
lor the behavior of classifiers to problems at hand.

Author Keywords
Interactive Machine Learning, Visualization, Decision
Theory, Interactive Optimization.

ACM Classification Keywords
H.5.2 [User Interfaces]: Graphical User Interface; I.2.6
[Learning].

General Terms
Algorithms, Human Factors.

INTRODUCTION
Machine learning (ML) methods are becoming increasingly
popular amongst HCI researchers who seek to build predic-
tive models from a set of representative training data. In
use, the models provide classifications of states of the world
or of users that cannot be inspected directly, based on sets
of available observations. Researchers using off-the-shelf

ML techniques in a “black-box” manner can find that they
need to iteratively change various parameters and settings
in order to obtain good results. Refining the behavior of the
predictive models and the classifications they generate of-
ten requires significant understanding of the learning and
classification procedures. Currently, the parameters of clas-
sification algorithms are often set manually in a process that
can be tedious even for ML experts. The task requires
enough understanding of the parameter space, and the prob-
lem of shaping the behavior of a classifier becomes harder
as the number of classes increases. Furthermore, there are
often dependencies among parameters, which lead to a
complex mapping between the parameter values and the
behavior of the system. Such dependencies make it difficult
to estimate parameters that might provide desirable results,
leading to a trial and error approach to optimizing the beha-
vior of a classifier.

We have been pursuing the creation of interactive tech-
niques that enable users to better understand and to tailor
the performance of classifiers via intuitive controls and
visualizations. The challenges in such techniques lie in
identifying the intuitive controls the user wishes to have,
effectively providing those controls, computationally coupl-
ing them to the numerical procedures that are linked to
model generation or usage, and providing relevant real-time
feedback. The method relies on a tight coupling between
human input and an embedded optimization procedure that
shows how the overall behavior of the classifier changes
with adjustments to parameters.

In this paper, we focus on the domain of multiclass classifi-
cation, common in many HCI research problems. For such
problems, the goal is to construct and use a statistical clas-
sifier that assigns unlabeled states of interest to one of the
discrete number of classes, given a set of observations. It is
common to evaluate such models using single goodness
metrics such as overall accuracy. However, we assert that
HCI researchers often need finer-grained control, and could
benefit greatly from the ability to express preferences about
how a classifier should work. For example, in a gesture
recognition system it may be absolutely necessary to detect
a small subset of common gestures correctly, while errors in
the detection of less frequent gestures might be tolerated.
By appropriately setting such parameters as the costs of
misclassification of items, it is possible to modify the beha-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

vior of the algorithm such that it is best aligned with the
desired performance of the system.

We introduce ManiMatrix, (for Manipulable Matrix), an
interactive system that enables system designers to intui-
tively refine the behavior of classification systems. Mani-
Matrix centers on the manual refinement and consistent
automated propagation of user refinement intentions on sets
of thresholds that are used to translate the probabilistic out-
put of classifiers into classification decisions. These settings
can be viewed as assigning sets of costs of misclassification
in a confusion matrix. ManiMatrix enables its users to di-
rectly interact with a confusion matrix and to view the im-
plications of incremental changes to the matrix via a real-
time interactive cycle of re-classification and visualization.
The approach allows users to specify preferences about
different types of misclassification via a display of densities
and distances of items.

ManiMatrix manages the complexity for users by perform-
ing inferential “heavy lifting” under the hood to convert the
intuitive human-centric inputs into complex settings of mul-
tiple parameters that are consistent with users’ local refine-
ments. The system employs a fast optimization routine to
compute the implications of a user’s sequence of refine-
ments on all of the parameters of the confusion matrix, con-
tinuing to update parameters in response to a user’s inputs.
The coupling between interactions and the resulting classi-
fication system provides users with an intuition for the
structure of the problem and helps them find a solution that
is better aligned with their goals. The methodology can be
applied to any multiclass classification system (e.g., models
generated by Weka [14]).

Specifically, the main contributions of this paper are:

1. Presentation of ManiMatrix, a system that provides
intuitive interactive visualization primitives in order to
allow users to specify preferences about classifiers.

2. Methods for coupling simple, intuitive interactions in
ManiMatrix with efficient optimization routines that al-
low instant modification of classification boundaries,
thus providing real-time feedback to users.

3. Report on a user study conducted with two types of
classification tasks. Results showed that users were not
only able to use the system, but that they were able to
quickly create classifiers aligned with their preferences.

RELATED WORK
A recent survey of 112 HCI professionals reported that
about one third have used machine learning in their HCI
work [18]. Some of this work seeks to develop novel input
modalities by building models that disambiguate and interp-
ret noisy streams of data. Examples include handwriting
and speech recognition, vision-based sensing techniques,
and muscle-computer interfaces [23]. Machine learning has
also been used to infer such hidden user states as affect,
intentions, and workload and cost of interruption from user
activity, context signals, and/or physiological signals [20,
15, 16, 1216, 17]. Furthermore, researchers have been de-

signing machine learning techniques to support adaptive or
mixed-initiative interfaces. These interfaces aim to provide
rich automated assistance so that the human-computer sys-
tem can become more effective than the sum of its parts.

However, effective usage of such machine learning models
require adeptness and understanding that usually comes
with experience. A recent investigation on the current use
of machine learning by non-expert researchers identified
three major difficulties: (1) difficulty in applying an itera-
tive exploration process, (2) difficulty in understanding the
machine learning models, and (3) difficulty in evaluating
performance [19]. We tackle some of these issues in the
context of multiclass classification by enabling users to
directly encode their detailed preferences about classifica-
tion actions using an interactive system.

Our work is closely aligned with evolving research on in-
teractive machine learning. Fails and Olsen assert the im-
portance of human involvement to provide training data and
propose an interactive system that allows users to train,
classify, and correct classifications in a real-time iterative
loop [10]. Talbot et al. apply the same philosophy to help
users easily build an ensemble classifier by combining mul-
tiple component classifiers [25]. Their main goal is to
achieve high classification accuracy across all classes rather
than to refine the behavior of a classifier in accordance with
specific preferences. In our work, we address the challenge
of providing users with tools to efficiently manipulate the
confusion matrix so as to specify preferences, to understand
the implications of local refinements on performance, and
ultimately to converge in an iterative manner on a classifi-
cation system that better aligns with their design goals.

Several general approaches have been used for decades to
probe the performance of learned classifiers. These include
the use of summary statistics of classifiers such as log
scores, classification accuracies, F-measures, and a variety
of other statistics [24,26], ROC curves, area under ROC,
and cost curves [7], which support evaluation of model per-
formance as a function of misclassification costs. While
these visualizations are commonly used in the machine
learning community, they are restricted to binary classifica-
tion tasks for practical purposes. More importantly, they do
not directly support iterative improvement of a classifier.
To facilitate the use of statistical classifiers within systems,
researchers have tried to visualize data and mathematical
representations of the classification model. For example,
one approach is to plot the data instances or cases in some
projection of feature space and to visualize the boundaries
predicted among classes [13, 22]. This approach generalizes
across algorithms but is limited in that it does not reveal
insights about the internal operation of algorithms. Ware et
al. showed that people can produce better classifiers than
automatic techniques [27] when assisted by a tool that pro-
vides visualizations about the operation of specific machine
learning algorithms such as decision trees [2], naïve-Bayes
[3], SVMs [4], and HMMs [6].

Figure 1. From probabilities to classification boundaries via a
cost matrix. Probabilities across each class (left) are combined
with the cost matrix to generate decision boundaries (right)
that capture a designer’s preferences about classification.

SPECIFYING FINE-GRAINED PREFERENCES
We consider a general multiclass classification problem, in
which the goal is to build a classifier that can accurately
assign a label, out of ܿ different choices, to a test data point.
Such classification tasks can be performed by first training
a classifier from some training corpus and then applying the
classifier to unseen test data points. This is typical of the
use of ML within HCI applications.

Many researchers rely heavily on the overall classification
accuracy of predictive models, often coupled with a consid-
eration of the lift in classification accuracy provided by the
predictive models over the accuracy of predictions generat-
ed by a marginal model that classifies according to the
background statistics of classes. This classification accura-
cy is calculated by taking the number of correctly labeled
instances of test data divided by the total number of in-
stances the model has tried to classify. Given a confusion
matrix, classifier performance can be expressed as the sum
of test instances correctly classified, and thus placed on the
diagonal, divided by the sum of all values in the matrix.

For most real-world problems, achieving perfect classifica-
tion accuracy is usually impossible. For a variety of rea-
sons, some cases will usually be incorrectly classified.
While the classification accuracy metric treats each mis-
classified instance equally, real-world scenarios often make
different misclassifications more or less costly or desirable.
For instance, in junk email filtering, misclassifying junk as
regular email is typically less costly than misclassifying
regular email as junk. There are many examples of HCI
applications where the costs of misclassification are non-
uniform across classes and these situations highlight the
potential value of creating tools that could allow system
designers—as well as end users—to specify their prefe-
rences about classification in a fine-grained manner. Re-
finements to performance achievable via the use of such
tools may yield more value than efforts aimed at increasing
a singular measure of overall classification accuracy.

In the most general setting, a classifier generates ܿ different
likelihood scores (denoted ,ଵ݌ … , ௖݌), for each test case
which correspond to each of the ܿ possible class labels.
These scores reflect the confidence of assigning each par-
ticular label to the case and can be easily transformed into
probabilities using appropriate normalizing techniques (see
[21] for example). Here, we assume that these scores have
been appropriately normalized. Hence, ݌௜ is the probability
that a test case belongs to class i. In the simplest form, each
test point is assigned the label with the maximum score.

To enable users to specify finer-grained preferences about
the process of assigning cases to classes, we leverage prior
work on Bayesian decision theory [8]. This methodology
depicts the preferences over the classifiers using values that
denote the cost or penalty incurred when a data point is
misclassified. Since users can specify a cost value for each
cell in the confusion matrix generated by the model, we can
define a symmetric ܿ ൈ ܿ structure known as the cost ma-

trix. More formally, we denote parameters ݐݏ݋ܥ௜௝ as cost of
misclassifying a test case as class j, when its true class was
i. We represent the costs for all i and j as a real-valued cost
matrix ࡯ ൌ ௜௝൧, where the entry in ith row and the jthݐݏ݋ܥൣ
column corresponds to ݐݏ݋ܥ௜௝.

Given these costs, a decision-theoretic analysis estimates
the expected cost or risk of assigning a class label to the test
data point by considering the probability distribution output
from the classification model for each test case. In particu-
lar, the risk of assigning a label combines the classification
output with the misclassification cost by considering the
probability that the data point belonged to the other classes.
The risk of assigning label j to each case can be written as:

௝݇ݏܴ݅ ൌ෍݌௜ · ௜௝ݐݏ݋ܥ

஼

௜ୀଵ

The test case is assigned a label that has the minimum risk.
The labeling of the cases based on minimizing risk can be
viewed as identifying decision boundaries for classification
of cases. Such boundaries shift with changes in the values
of ݐݏ݋ܥ௜௝. Users can specify their preferences over the clas-
sifier space by refining the values of the costs. By increas-
ing the value of ݐݏ݋ܥ௜௝ we shift a decision boundary so as
to make the classifier require a higher likelihood of label j
being the true class before assigning label j to a test case
when its true label is i. Similarly lowering ݐݏ݋ܥ௜௝ tends to
favor labeling data points as class j, accepting a case as a
class at a lower inferred probability.

Figure 1 shows how different cost matrices can result in
different classification boundaries. The figures on the left
depict the estimated probabilities over a 2-dimensional
space for three different classes. These probabilities are
derived from an underlying classification system that was
built using a training corpus. We compute an expected cost
of using the classifiers on the test sets by combining these
probabilities with different cost matrices in order to produce
different classification boundaries. We see that different
settings of cost shift the boundary in order to minimize the
classification risk.

Unfortunately, specifying such fine-grained preferences via
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large.
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in
complex, non-linear ways which is often unpredictable,
even to expert users. In some scenarios, one might estimate
such parameters using monetary considerations (such as
direct profit or loss). However, such considerations are hard
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.

MANIMATRIX
ManiMatrix is an interactive system that allows users to
directly manipulate the confusion matrix in order to specify
preferences and explore the classification space. The system
consists of a visualization and control interface joined with
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).

Interacting with the Confusion Matrix
At the core of ManiMatrix is a confusion matrix, which
represents classification results by aggregating instances
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem.

The confusion matrix is a common visualization because it
is easy to interpret and can be used with any classification
algorithm. Other visualizations may also serve as the basis
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as
future work.

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they
want to have as small a number as possible in the middle
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion
matrix. When users move the mouse pointer over a cell,
ManiMatrix shows a green up arrow and a red down arrow
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the
user request. This is done at interactive rates and users re-
ceive immediate feedback.

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users
that the request is not feasible. For example, Figure 2b
shows the new confusion matrix after the user clicked on
the down button from the middle left cell. To facilitate large
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button.

Operations, even on a single cell, typically lead to changes
in other parts of the matrix. To show changes in each cell,
ManiMatrix provides feedback by highlighting the cells
whose values have changed; green represents an increase
and red a decrease. The magnitude of change is represented
by the opacity; the bigger the difference is, the more opaque.

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up

 (a) (b) (c) (d)

Figure 2. Interacting with ManiMatrix.

and down operations are not necessarily reversible. For
example, clicking on the up arrow from the middle left cell
in Figure 2b does not necessarily return to the original ma-
trix shown in Figure 2a. Hence, ManiMatrix supports undo
(Ctrl-Z) and redo (Ctrl-Y) to enable users to roll back states.

A change in one cell affects one or more other cells. When
a cell is changed in an indirect manner, users may want to
encourage the cell value to be changed in a specific direc-
tion. For example, while preventing the cloudy days from
being classified as rainy days, users may also want to speci-
fy that as many cloudy days as possible should be classified
correctly. ManiMatrix supports this by allowing users to
specify the desired direction of the value changes for each
cell. As opposed to the strong constraint of directly incre-
menting or decrementing a cell, these hints are biasing cues.

When users press the Control key on the keyboard, icons of
the up and down buttons change so that users can lock the
cell with a desired direction (Figure 2c). Once users click
on the direction button with the Control key pressed, Ma-
niMatrix adds a direction lock icon at the top left corner of
the cell to show that a lock is set for that cell (Figure 2d).
Figure 3 illustrates the effects of the use of the direction
lock; clicking on the down arrow from the middle left cell
with the direction lock set in the center cell (Figure 3, left)
gives a bigger value change in the center cell than the one
without the direction lock (Figure 3, right).

When the lock is set, the clear lock button is shown be-
tween the up and down buttons (Figure 2d) so that users can
clear the individual lock set in the cell. Users can also clear
all of the direction locks using the Clear Up/Down button at
the bottom of the interface.

Learning Preferences from User Interactions
Now that we have described the functionality and operation
of the interface, we present the methodology we use to
modify the cost matrix in response to user preferences so as
to achieve desired classifier behavior.

We first derive an objective function parameterized by the
cost matrix. This function represents how well a given cost
matrix matches the user intention. Thus, we can aim to sa-

tisfy user intentions by modifying the current cost matrix
such that the value of the objective function increases. We
use a gradient-ascent methodology. Specifically, given an
objective function, we compute gradients with respect to
the parameters of the cost matrix and take a step in a direc-
tion that would increase the value of the objective function.

Objective Function
The objective function reflects how well a cost matrix satis-
fies the user’s preferences, as expressed by sequences of
refinements. Since users are directly manipulating the con-
fusion matrix, and they focus on how individual cases are
being classified, we express the objective in terms of a fit-
ness function over every case.

When users click on the up or down arrow in the confusion
matrix, they express a desire for the number of instances in
that particular cell to change. In response to a user’s input,
we compute a desirable state ࢚ every case should be in. This
state is a vector with dimensions equal to the number of
classes. Similarly, given the current cost matrix, we also
compute the current state of every case (represented as ࢕).
This state vector is a direct function of the current cost pa-
rameters. We include a detailed mathematical description of
these states in Appendix A. Given these original and target
states, our objective function is the sum of individual fitness
functions over all N data points:

݁ݒ݅ݐ݆ܾܿ݁݋ ൌ ෍݂݅ݏݏ݁݊ݐሺ࢚௡, ௡ሻ࢕
ே

௡ୀଵ

The fitness function applied to each point measures how
well that point aligns with user preferences. In particular,
the fitness function measures how ‘near’ the current state ࢕
is to the target state ࢚. This, ‘nearness’ property can be cap-
tured by the negative of KL-divergence, which is used often
as a means of comparing probability distributions [5,8].
This can be formally represented as:

,࢚ሺݏݏ݁݊ݐ݂݅ ሻ࢕ ൌ ෍െ ݐ௜݈݃݋
௜ݐ
௜݋

௖

௜ୀଵ

Note that the maximum value attained by the fitness func-
tion is zero and is achieved when the current state ࢕ is same
as the target state ࢚. In all other cases, the fitness function
has a negative value.

Given this objective function, we compute gradients and
modify the cost matrix such that we increase the value of
the objective function. Appendix B shows how the gra-
dients of the objective function with respect to the costs can
be computed. These gradients provide directions which
promise to increase the value of the objective function.

Aside from the direction of movement, we also consider
another parameter: the step-size, or how much we should
move in the ascending direction. In our work, we employ
binary search in order to determine the step-size. Specifical-
ly, the system determines a step size such that the number

Figure 3. Effects of the direction lock. The down arrow was
pressed for the cell in the middle row and the leftmost column.
The result with the directional lock (left) showed much bigger
gain than case without direction lock (right).

in the particular cell where the user pressed the arrow key
increments or decrements exactly by one.

This search for the step size only considers the strong con-
straints and not the biasing cues, as the idea is that the
strong constraints need to be satisfied while both the bias-
ing cues and strong constraints are used to compute the
ascent direction. Finally, in case the binary search does not
find a step size that results in the required change, the algo-
rithm flags an “infeasible” condition. If a feasible step size
 :is found, then the cost parameters are updated as follows ߙ

௜௝௡௘௪ݐݏ݋ܥ ൌ ௜௝ݐݏ݋ܥ ൅ ߙ ·
݁ݒ݅ݐ݆ܾܿ݁݋ ߲
௜௝ݐݏ݋ܥ ߲

We can think of the whole procedure as a type of human-in-
the-loop optimization. The user interacts with the system
and that interaction determines the ascent direction, while
the system carries out optimization and determines the cor-
rect step size to take. This numerical procedure in conjunc-
tion with the interactive visualization results in a system
that users can interact and modify classifiers according to
their own preference.

Avoiding Overfitting and Generalization on Unseen Data
One of the concerns in building and using statistical clas-
sifiers is overfitting. Carrying out too many operations and
fine-tuning of classifiers just based on the training set can
lead to poor performance on previously unseen test cases.

In order to avoid overfitting and to guarantee good genera-
lization, we employ a classic leave-one-out technique to
generate the confusion matrix that users interact with.
Every case in the training set is classified using a classifier
trained using the rest of the cases, and the confusion matrix
summarizes these leave-one-out results. Operations carried
out on the leave-one-out matrix are statistically robust.
Thus, we expect that all of the operations performed via
ManiMatrix will generalize to the other unseen points [9].

USER STUDY
We conducted a user study to explore how ManiMatrix
influences the performance of users trying to adjust a model
and attain specific configurations of the confusion matrix.
We compared the use of the prototype with the more tradi-
tional method of directly specifying values within a cost

matrix. We implemented the CostMatrix interface (Figure
4) that allows users to directly edit cell values in a separate
pane from the confusion matrix. When users click on a cell,
CostMatrix provides a text box for them to enter a value.
After specifying one or more new values, users can execute
their changes by pressing the Execute button, which up-
dates the confusion matrix view on the left.

We tested the interfaces with two different sized problems
to investigate how well they scale. We also explored the
effects of providing (color) feedback that shows how each
cell within the confusion matrix changed in each iteration.

Methodology
We ran the study as a 2 (Interface: ManiMatrix vs. CostMa-
trix) × 2 (Feedback: Color vs. NoColor) × 2 (Size: Small vs.
Large) within-subjects design. Small problems were 3-class
problems (a 9-cell confusion matrix; e.g., Figure 2) and the
Large ones were 6-class problems (a 36-cell confusion ma-
trix; e.g., Figure 5). We independently counter-balanced the
Interface and Feedback manipulations, and ran the Small
problem before the Large one within each condition. We
explained each interface to participants the first time they
used it, and had them do a practice task with the Small
problem before performing test tasks with the interface. To
keep the study at a reasonable length, we imposed a time
limit for each task: 2 minutes for the Small problem and 4
minutes for the Large one. If participants hit the time limit,
our study application automatically stopped them and took
the confusion matrix at that point as the final answer.

We tested the conditions with 2 different tasks. In one task,
we provided the user with a specific target confusion matrix,
which they were asked to match using the interface (Figure
5 Left). These target matrices were created by randomly
adjusting values in the cells of the underlying cost matrix
for each problem. In the other task, we instead specified
that the participant should aim to increase or decrease the
values as much as possible in certain cells of the matrix
(Figure 5 Right). We created these by generating ecologi-
cally valid scenarios such as considering the identification
of certain classes as highly important or maximizing separa-
tion between two groups of classes. While we could have
probably created an arbitrary problem to test the interfaces,

Figure 5. Our two tasks: a fully specified target confusion
matrix (left) and a more abstract, but more realistic desire to
move the value of certain cells in certain directions (right).

Figure 4. CostMatrix interface with the associated confusion
matrix view on the left.

we found it easier to work with data from an existing prob-
lem. In our experiments, we used a subset of Newsgroup-20
[1] to generate the 3-class problem and a subset of Caltech-
101 [11] dataset to generate the 6-class problem. The under-
lying classification was based on Gaussian Processes and
we use leave-one-out confusion matrices in the study.

To counter-balance the order of Interface and Feedback, we
prepared 4 sets of tasks; each set consisted of 4 tasks (2 for
the Small problem and 2 for the Large one). Since we were
not trying to compare efficacy across tasks, we always
tested the first task before the second one.

Each task was presented as a matrix (Figure 5) at the left
side of ManiMatrix or CostMatrix in our study application.
When participants were ready to begin, they pressed the
“Start" button. Upon the completion of each task, either
when participants clicked the “Done” button or when the
task timed out, the study proceeded onto the next task.

We logged all actions and collected several metrics while
participants performed the tasks. These include task com-
pletion time as well as the number and type of operations
performed in each interface. We also logged the cost and
confusion matrices after each operation so that we could
calculate the overall increase (or decrease) in quality of the
confusion matrix at the end of the trial, as well as locate the
maximum gain seen during the course of each trial. At the
end of the study, we asked participants to complete a ques-
tionnaire to collect feedback about their experiences.

Participants and Apparatus
We recruited sixteen participants via an internal mailing list
for those interested in machine learning at a local software
company. The average age of participants was 33.4, ranging
from 21 to 48 years. 8 of the participants were researchers,
4 were interns, and 4 were software developers. All had
worked on at least one machine learning project.

We ran participants in pairs, with each working on a 3.16
GHz quad-core Dell T5400, with 8 GB RAM and 512 MB
Video memory, running Windows XP, and using 24” Dell
monitors at a resolution of 1920×1200. Since we had to put
maximum of 3 matrices for the CostMatrix interface, the
size of each matrix was 618×618. The study lasted 90 mi-
nutes, and participants were given a gratuity for their ef-
forts.

Results: Learning Classification Preferences
We explore the results of our study in three parts. First, we
analyze performance metrics to explore efficacy of each of
the interfaces. Then, we inspect behavioral results to better
understand usage within the various conditions. Finally, we
look at subjective ratings and comments.

Performance Results
We first looked at core participant performance within our
various conditions using three different dependent meas-
ures. For each of these, we used a mixed-model analysis of
variance (ANOVA) with Interface, Feedback, and Size as
fixed effects. We included Participant and Task as random
effects. Modeling Participant accounts for variation in indi-
vidual performance, and modeling Task accounts for any
difference in difficulty of the two task formulations.

We first examine task completion time, which is measured
as the time elapsed between the initial presentation of the
problem to the moment the participant clicked on the
“Done” button to commit their answer. When participants
bumped up against the time limit for each of the tasks, we
took that upper bound as their completion time. Since the
times were positively skewed, we performed a log trans-
form of the data prior to analysis. We found a significant
effect of Interface (F1,233=45.83, p<.001), with ManiMatrix
leading to faster performance than CostMatrix (103.7 vs.
141.8 secs, respectively). Participants hit the deadline more
when using CostMatrix than for ManiMatrix (3.25 vs.
1.625, respectively, on average across participants).

We also observed a significant effect of Size (F1,233=13.31,
p<.001), with the Small problems taking participants less
time to complete than the Large ones (106.7 vs. 138.8
seconds, respectively). Furthermore, we saw an interaction
between Interface and Size (F1,233=12.55, p<.001). Post-hoc
analyses with Bonferroni correction reveal that this was
driven by a significant slow down when participants moved
from the Small to the Large problem set in the CostMatrix
condition, but not when they were using ManiMatrix. See
Figure 6 (left) for a summary of the means. Interestingly,
we did not find a significant effect for Feedback.

Second, we looked at the magnitude of quality increase in
each confusion matrix. For the task in which we presented
the target matrix, we calculated this by taking the difference

Figure 6. Means of performance metrics show ManiMatrix allows users to perform tasks faster (left) and more effectively (center
and right) than with CostMatrix. Error bars represent standard error.

0

20

40

60

80

100

120

140

160

180

200

Small Large

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

ec
)

ManiMatrix CostMatrix ManiMatrix CostMatrix
0

5

10

15

20

25

30

35

Small Large

Q
ua

lit
y

G
ai

n
(%

)

ManiMatrix CostMatrix ManiMatrix CostMatrix
0

5

10

15

20

25

30

35

Small Large

M
ax

im
um

 Q
ua

lit
y

G
ai

n
(%

)

ManiMatrix CostMatrix ManiMatrix CostMatrix

in distance between the initial and target matrix and the
distance between the final and the target matrix. For the
task in which we presented desires as values on specific
cells, we summed the differences between the final and the
initial matrix, in the cells of interest. To be able to compare
the Small and Large problems more easily, we further nor-
malized these values by the total number of instances with-
in each matrix, resulting in a percentage value. Larger
values represent better performance for both tasks.

Again, our ANOVA revealed a significant effect of Inter-
face (F1,233=7.35, p=.007), with ManiMatrix seeing a larger
gain than CostMatrix (14.4% vs. 9.7%, respectively). The
analysis also revealed a significant effect of Size
(F1,233=70.62, p<.001), with the Large problems seeing a
larger gain than the Small ones (19.4% vs. 7.9%, respec-
tively). See Figure 6 (center) for a summary of the means.

Finally, as participants did not always know when to stop
trying to optimize their solution, we observed that they
sometimes ended the task with a confusion matrix that was
of lower quality than another state that they had passed
through during the course of the session. Hence, we also
looked at the maximum quality increase observed during
the course of a trial. We again found a main effect of Inter-
face (F1,248=.035, p=.035) as well as of Size (F1,248=75.74,
p<.001), with valences of the effects in the same direction
as before. See Figure 6 (right) for the mean values.

In summary, we have evidence suggesting that ManiMatrix
is not only faster, but also leads to better performance than
manipulation of a more traditional CostMatrix interface.
Additionally, it was interesting to see the interaction be-
tween Interface and Size, at least with the task time metric.
We were encouraged to find that ManiMatrix does not seem
to impose significantly increased overhead with the growth
of the problem, as opposed to the CostMatrix interface,
which was associated with a significant slowing on larger
tasks. While we had initially expected to see differences in
performance caused by the Feedback manipulation, we saw
no such effects, and will return to this finding below.

Behavioral Results
In order to better understand strategies that participants
used to complete their tasks, we explored several behavioral

metrics. First, we looked at the use of undo and redo, which
were used both to correct errors and to explore the space of
tradeoffs that exist when adjusting the various parameters.
Performing analyses that were similar to those used for the
performance metrics, we found a significant effect of Inter-
face for both Undo (F1,233=48.51, p<.001) and Redo
(F1,233=6.15, p=.014). ManiMatrix showed more Undo op-
erations on average (7.04 vs. 2.92, respectively) but fewer
Redos (0.09 vs. 0.41, respectively). This is consistent with
our observations that participants tended to use Undo in
order to correct errors and roll back in ManiMatrix, since
the operations were not reversible (i.e., clicking on the
down arrow and then the up arrow does not necessarily
return one to the initial matrix). However, they seemed to
use Undo to compare values in the CostMatrix condition,
hence the increased use of Redo to return to states.

We also looked at the number of total operations used in the
various conditions. This was counted as the number of
times the user executed a set of constraints in either inter-
face condition. This analysis showed a significant effect of
Interface (F1,233=117.23, p<.001) with ManiMatrix leading
to far more operations than CostMatrix (87.9 vs. 13.6, re-
spectively). This makes sense as operations in ManiMatrix
were more lightweight and led to greater granularity in ex-
ploration. In general, it also implies that participants tended
to both be a little slower with operations, but also set mul-
tiple simultaneous constraints when using CostMatrix, po-
tentially leading to slightly lower exploration.

Further, we counted the number of infeasible operations
(i.e., the user set constraints that could not be satisfied) and
found that participants hit about 5 of these per task. While
this may seem reasonable, given that participants would use
the constraints to push the bounds of what the model could
do until it could do no more, exploring the feasibility of
better satisfying constraints is a challenge for future work.
Analysis of the number of operations such as clicks or lock-
ing the values within the cells for each ManiMatrix condi-
tion yielded no significant effects or interactions.

Subjective Responses and Strategies
After they had performed all tasks, we asked participants
several questions to acquire subjective ratings on the differ-
ent Interface conditions. We conducted paired t-tests to

Figure 7. Means of subjective ratings show that users found ManiMatrix easier to use (left Q1), felt that it helped them get to bet-
ter answers (left Q2), and liked the system better (left Q3). Users also found the system easier to use when Color Feedback was
provided (right Q1) and felt that the Feedback helped them get to better answers (right Q2). Error bars represent standard error.

0

1

2

3

4

5

6

7

Q1 Q2 Q3

Su
bj

ec
tiv

e
R

es
po

ns
es

(1

-7
 L

ik
er

t s
cl

ae
)

ManiMatrix CostMatrix ManiMatrix CostMatrix ManiMatrix CostMatrix
0

1

2

3

4

5

6

7

Q1 Q2

Su
bj

ec
tiv

e
R

es
po

ns
es

(1

-7
 L

ik
er

t s
cl

ae
)

Color NoColor Color NoColor

compare responses across the conditions. We found signifi-
cant differences on all three questions: It was easy to use
this system (t15=5.35, p<.001), I was able to find answers
pretty close to the target with this system (t15=3.05, p=.008),
and I liked to use this system (t15=3.51, p=.003). All subjec-
tive responses preferred ManiMatrix over CostMatrix and
means for the responses are shown in Figure 7.

We also had participants rate the Feedback conditions re-
gardless of the interface, and found a similar preference for
having the Color Feedback based on the first two questions
(t15=4.25, p<.001 and t15=2.30, p=.03, respectively), even
though performance data does not seem to indicate that this
helped users very much.

DISCUSSION
The results of the user study are encouraging and show that
participants used ManiMatrix to effectively construct clas-
sifiers aligned with target preferences. This highlights the
promise of interactive optimization for steering classifica-
tion systems. We now reflect about observations and oppor-
tunities that arose over the course of this work.

Basic Strategy
When asked to describe the process they used, participants
reported common strategies. Regardless of the interface,
they first looked for the cells with biggest differences be-
tween the target and the current. Then, with ManiMatrix,
they click on the up and down buttons to make that differ-
ence smaller. With CostMatrix, participants adjusted the
cells they wanted to penalize or reward; increased the costs
of cells whose values needed to be reduced, and decreased
the costs of the cells whose values needed to be increased.

We observed that lock usage varied between participants.
Some used much more aggressively than others. While a
few participants abandoned it after a couple of trials, most
participants frequently used at least one lock especially for
the Large problem. A participant who slightly favored
CostMatrix in their feedback liked the lock and wanted to
have the lock on the output confusion matrix in the Cost-
Matrix interface so that he could not commit changes that
would break the lock.

Interactive Optimization
We observed that participants were surprised and frustrated
more often by the result of CostMatrix. We assert that this
is because participants had to manipulate the cost matrix to
control the confusion matrix. While it is easy to decide
which cells to penalize or reward, it is non-trivial to choose
the right cost to appropriately penalize or reward cells.
Even though we provided participants with the reasonable
cost value range (between 0 and 2), participants had to
spend time understanding the effect of each cost change on
the entire matrix. For example, several participants gradual-
ly changed the cost of one cell to check the effect. While a
high cost value works reasonably well to reduce the value
of the target cell, participants had a hard time figuring out
how to change the costs to increase the value, and an even
harder time with achieving simultaneous improvements.

Compared to ManiMatrix, CostMatrix has two inherent
burdens. First, participants had to manage two matrices
rather than one, and retain the mapping between the two.
For example, several participants used their fingers to map
cells between the matrices. Second, it is considerably chal-
lenging for participants to manipulate multiple cost parame-
ters simultaneously. ManiMatrix on the other hand allows
participants to directly work on the confusion matrix and
the embedded optimization routine automatically estimates
change across all the cost parameters.

Color Feedback
Participants reported that the basic strategy was the same
with or without (Color) Feedback. While we found no sig-
nificant effect of Feedback in terms of task completion time,
12 out of 16 participants indicated that color feedback was
helpful because, without color feedback, they had invest
more time and effort to identify drastic, adverse value
changes. Several participants reported that they resorted
more to undo and redo operations to manually compare old
values with new ones in the conditions with no feedback.
Some of the participants who did not use the color feedback
mentioned that it was distracting. One participant wanted to
see the feedback only for cells that had locked directions
because those cells were important. For simplicity, we did
not provide the aggregated changes for each row or column,
or the entire matrix. However, it may be useful to provide
additional information summarizing changes. Overall, we
believe that it is important to convey changes at every itera-
tion. Exploring such visualizations remains future work.

CONCLUSION
We presented ManiMatrix, an interactive system that allows
interactive refinement of classification boundaries in a mul-
ticlass setting. The system weaves together visualization,
interaction, and fast optimization routines to enable users to
steer classification behavior according to their preferences.
A user study indicates that methodology can be used to
identify numerical parameter settings far better and more
quickly than manual tuning.

ManiMatrix is the result of an initial attempt to design a
system that enables system designers to directly encode
their preferences about the performance of a classification
system as well as to provide insights about the structure of
the classification problem. In future research, we aim to
identify richer forms of interaction and embed them into
other aspects of ML, such as the allocation of discriminato-
ry effort during the construction of predictive models.

REFERENCES
1. 20 Newsgroups. http://kdd.ics.uci.edu/databases/20new

sgroups/20newsgroups.html.
2. Ankerst, M., Elsen, C., Ester, M. and Kriegel, H.-P.

Visual classification: an interactive approach to decision
tree construction. KDD 1999.

3. Becker, B., Kohavi, R. and Sommerfield, D. Visualizing
the Simple Bayesian Classifier. Information Visualiza-

tion in Data Mining and Knowledge Discovery, [ed.]
Fayyad, U., Grinstein, G. and Wierse, A. (2001).

4. Caragea, D., Cook, D. and Honavar, V.G. Gaining in-
sights into support vector machine pattern classifiers us-
ing projection-based tour methods. KDD 2001.

5. Cover, T.M. and Thomas, A.J. Elements of Information
Theory. Wiley-Interscience, Hoboken, NJ, USA, 2006.

6. Dai, J. and Cheng, J. HMM Editor: a visual editing tool
for profile hidden Markov models. BMC Genomics 9,
Suppl1 (2008).

7. Drummond, C. and Holte, R.C. Cost curves: An im-
proved method for visualizing classifier performance.
Machine Learning 65, 1 (2006).

8. Duda, R.O, Hart, P.E. and Stock, D.G. Pattern Classifi-
cation. Wiley-Interscience, Hoboken, NJ, USA, 2004.

9. Evgeniou, T., Pontil, M. and Elisseeff, A. Leave One
Out Error, Stability, and Generalization of Voting Com-
binations of Classifiers. Machine Learning 55, 1 (2004).

10. Fails, J.A. and Olsen, D.R.J. Interactive machine learn-
ing. IUI 2003.

11. Fei-Fei, L., Fergus, R. and Perona, P. One-Shot Learn-
ing of Object Categories. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28, 4 (2006).

12. Fogarty, J., Ko, A., Aung, H., Golden, E., Tang, K. and
Hudson, S. Examining task engagement in sensor-based
statistical models of human interruptibility. CHI 2005.

13. Frank, E. and Hall, M. Visualizing class probability es-
timators. LNCS 2838, Springer (2003).

14. Garner, S.R. WEKA: The Waikato Environment for
Knowledge Analysis. New Zealand Computer Science
Research Students Conference, (1995).

15. Grimes, D., Tan, D., Hudson, S., Shenoy, P. and Rao, R.
Feasibility and pragmatics of classifying working mem-
ory load with an electroencephalograph. CHI 2008.

16. Horvitz, E. and Apacible, J. Learning and Reasoning
about Interruption. ICMI 2003.

17. Kapoor, A. and Horvitz, E. Experience sampling for
building predictive user models: a comparative study.
CHI 2008.

18. Moustakis, V. Do People in HCI Use Machine Learn-
ing? HCI 2, (1997).

19. Patel, K., Fogarty, J., Landay, J. and Harrison, B. Ex-
amining Difficulties Software Developers Encounter in
the Adoption of Statistical Machine Learning. AAAI
2008.

20. Picard, R.W. Affective computing. MIT Press, Cam-
bridge, MA, USA, 1997.

21. Platt, J.C. Probabilistic Outputs for Support Vector Ma-
chines and Comparisons to Regularized Likelihood Me-
thods. Advances in Large Margin Classifiers, MIT Press
(1999).

22. Rheingans, P. and desJardins, M. Visualizing High-
Dimensional Predictive Model Quality. VIS 2000.

23. Saponas, S., Tan, S., Morris, D. and Balakrishnan, R.
Demonstrating the feasibility of using forearm electro-
myography for muscle-computer interfaces. CHI 2008.

24. Stiglic, G., Mertik, M., Podgorelec, V. and Kokol, P.
Using Visual Interpretation of Small Ensembles in Mi-
croarray Analysis. CMBS 2006.

25. Talbot, J., Lee, B., Kapoor, A., and Tan, D. Ensemble
Matrix: Interactive Visualization to Support Machine
Learning with Multiple Classifiers, CHI 2009.

26. Urbanek, S. Exploring Statistical Forests. Joint Statis-
tical Meeting 2002.

27. Ware, M., Frank, E., Holmes, G., Hall, M. and Witten, I.
Interactive machine learning: letting users build classifi-
ers. Int. J .Human-Computer Studies 56, 3 (2001).

APPENDIX A
The current state for a data point is a function of risk and is
mathematically represented using the softmax function:

࢕ ൌ
ሾexpሺെܴ݅݇ݏଵሻ, . . , expሺെܴ݅݇ݏ௖ሻሿ

∑ expሺെܴ݅݇ݏ௜ሻ௖
௜ୀଵ

Note, that expሺ·ሻ is a monotonically increasing function
thus, the vector ࢕ is a normalized representation in which a
high value corresponds to the class with low risk. The target
state for each data point represents the ideal state given the
user interaction. In the absence of interaction, the target
state should match the original state. However, if the user
seeks another state they can interact and then the target state
of a particular point depends upon the user interaction.

Consider the case when the user presses the up arrow or
locks the up direction for a cell (i, j) in the confusion ma-
trix. In this case we want that all the data points with true
class i be classified as j. This implies that ܴ݅݇ݏ௝ for all
those points be minimum, and we consequently assign the
target vector ࢚ as zeros everywhere except the jth dimension
which is set to one.

Similarly, when a user presses the down arrow key or bi-
ases the (i, j) cell to go down, we seek a configuration
where ܴ݅݇ݏ௝ is not minimum. Consequently, we set all the
entries of the target vector ࢚ to be equal to ࢕, except for the
jth dimension which is set to zero.

For the rest of the data points (which are unaffected by user
interactions), we always set the target vector equal to the
original vector. This helps regularize the problem by imply-
ing that we seek a configuration that satisfies the user prefe-
rence but is closest to the original state.

APPENDIX B
The gradients of the objective function with respect to the
 :௜௝ are written asݐݏ݋ܥ

݁ݒ݅ݐ݆ܾܿ݁݋ ߲
௜௝ݐݏ݋ܥ ߲

ൌ ෍݌௜௡ · ௝௡݋ ൥൭෍ ௜ᇲݐ
௡

௖

௜ᇲୀଵ

൱ െ 1൩
ே

௡ୀଵ

