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ABSTRACT 
Interest has been growing within HCI on the use of machine 
learning and reasoning in applications to classify such hid-
den states as user intentions, based on observations. HCI 
researchers with these interests typically have little exper-
tise in machine learning and often employ toolkits as rela-
tively fixed “black boxes” for generating statistical 
classifiers. However, attempts to tailor the performance of 
classifiers to specific application requirements may require 
a more sophisticated understanding and custom-tailoring of 
methods. We present ManiMatrix, a system that provides 
controls and visualizations that enable system builders to 
refine the behavior of classification systems in an intuitive 
manner. With ManiMatrix, users directly refine parameters 
of a confusion matrix via an interactive cycle of re-
classification and visualization. We present the core me-
thods and evaluate the effectiveness of the approach in a 
user study. Results show that users are able to quickly and 
effectively modify decision boundaries of classifiers to tai-
lor the behavior of classifiers to problems at hand. 
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INTRODUCTION 
Machine learning (ML) methods are becoming increasingly 
popular amongst HCI researchers who seek to build predic-
tive models from a set of representative training data. In 
use, the models provide classifications of states of the world 
or of users that cannot be inspected directly, based on sets 
of available observations. Researchers using off-the-shelf 

ML techniques in a “black-box” manner can find that they 
need to iteratively change various parameters and settings 
in order to obtain good results. Refining the behavior of the 
predictive models and the classifications they generate of-
ten requires significant understanding of the learning and 
classification procedures. Currently, the parameters of clas-
sification algorithms are often set manually in a process that 
can be tedious even for ML experts. The task requires 
enough understanding of the parameter space, and the prob-
lem of shaping the behavior of a classifier becomes harder 
as the number of classes increases. Furthermore, there are 
often dependencies among parameters, which lead to a 
complex mapping between the parameter values and the 
behavior of the system. Such dependencies make it difficult 
to estimate parameters that might provide desirable results, 
leading to a trial and error approach to optimizing the beha-
vior of a classifier.  

We have been pursuing the creation of interactive tech-
niques that enable users to better understand and to tailor 
the performance of classifiers via intuitive controls and 
visualizations. The challenges in such techniques lie in 
identifying the intuitive controls the user wishes to have, 
effectively providing those controls, computationally coupl-
ing them to the numerical procedures that are linked to 
model generation or usage, and providing relevant real-time 
feedback. The method relies on a tight coupling between 
human input and an embedded optimization procedure that 
shows how the overall behavior of the classifier changes 
with adjustments to parameters. 

In this paper, we focus on the domain of multiclass classifi-
cation, common in many HCI research problems. For such 
problems, the goal is to construct and use a statistical clas-
sifier that assigns unlabeled states of interest to one of the 
discrete number of classes, given a set of observations. It is 
common to evaluate such models using single goodness 
metrics such as overall accuracy. However, we assert that 
HCI researchers often need finer-grained control, and could 
benefit greatly from the ability to express preferences about 
how a classifier should work. For example, in a gesture 
recognition system it may be absolutely necessary to detect 
a small subset of common gestures correctly, while errors in 
the detection of less frequent gestures might be tolerated. 
By appropriately setting such parameters as the costs of 
misclassification of items, it is possible to modify the beha-
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vior of the algorithm such that it is best aligned with the 
desired performance of the system.  

We introduce ManiMatrix, (for Manipulable Matrix), an 
interactive system that enables system designers to intui-
tively refine the behavior of classification systems. Mani-
Matrix centers on the manual refinement and consistent 
automated propagation of user refinement intentions on sets 
of thresholds that are used to translate the probabilistic out-
put of classifiers into classification decisions. These settings 
can be viewed as assigning sets of costs of misclassification 
in a confusion matrix. ManiMatrix enables its users to di-
rectly interact with a confusion matrix and to view the im-
plications of incremental changes to the matrix via a real-
time interactive cycle of re-classification and visualization. 
The approach allows users to specify preferences about 
different types of misclassification via a display of densities 
and distances of items.  

ManiMatrix manages the complexity for users by perform-
ing inferential “heavy lifting” under the hood to convert the 
intuitive human-centric inputs into complex settings of mul-
tiple parameters that are consistent with users’ local refine-
ments. The system employs a fast optimization routine to 
compute the implications of a user’s sequence of refine-
ments on all of the parameters of the confusion matrix, con-
tinuing to update parameters in response to a user’s inputs. 
The coupling between interactions and the resulting classi-
fication system provides users with an intuition for the 
structure of the problem and helps them find a solution that 
is better aligned with their goals. The methodology can be 
applied to any multiclass classification system (e.g., models 
generated by Weka [14]). 

Specifically, the main contributions of this paper are: 

1. Presentation of ManiMatrix, a system that provides 
intuitive interactive visualization primitives in order to 
allow users to specify preferences about classifiers. 

2. Methods for coupling simple, intuitive interactions in 
ManiMatrix with efficient optimization routines that al-
low instant modification of classification boundaries, 
thus providing real-time feedback to users.  

3. Report on a user study conducted with two types of 
classification tasks. Results showed that users were not 
only able to use the system, but that they were able to 
quickly create classifiers aligned with their preferences. 

RELATED WORK 
A recent survey of 112 HCI professionals reported that 
about one third have used machine learning in their HCI 
work [18]. Some of this work seeks to develop novel input 
modalities by building models that disambiguate and interp-
ret noisy streams of data. Examples include handwriting 
and speech recognition, vision-based sensing techniques, 
and muscle-computer interfaces [23].  Machine learning has 
also been used to infer such hidden user states as affect, 
intentions, and workload and cost of interruption from user 
activity, context signals, and/or physiological signals [20, 
15, 16, 1216, 17]. Furthermore, researchers have been de-

signing machine learning techniques to support adaptive or 
mixed-initiative interfaces. These interfaces aim to provide 
rich automated assistance so that the human-computer sys-
tem can become more effective than the sum of its parts.  

However, effective usage of such machine learning models 
require adeptness and understanding that usually comes 
with experience. A recent investigation on the current use 
of machine learning by non-expert researchers identified 
three major difficulties: (1) difficulty in applying an itera-
tive exploration process, (2) difficulty in understanding the 
machine learning models, and (3) difficulty in evaluating 
performance [19]. We tackle some of these issues in the 
context of multiclass classification by enabling users to 
directly encode their detailed preferences about classifica-
tion actions using an interactive system. 

Our work is closely aligned with evolving research on in-
teractive machine learning. Fails and Olsen assert the im-
portance of human involvement to provide training data and 
propose an interactive system that allows users to train, 
classify, and correct classifications in a real-time iterative 
loop [10]. Talbot et al. apply the same philosophy to help 
users easily build an ensemble classifier by combining mul-
tiple component classifiers [25]. Their main goal is to 
achieve high classification accuracy across all classes rather 
than to refine the behavior of a classifier in accordance with 
specific preferences. In our work, we address the challenge 
of providing users with tools to efficiently manipulate the 
confusion matrix so as to specify preferences, to understand 
the implications of local refinements on performance, and 
ultimately to converge in an iterative manner on a classifi-
cation system that better aligns with their design goals.  

Several general approaches have been used for decades to 
probe the performance of learned classifiers. These include 
the use of summary statistics of classifiers such as log 
scores, classification accuracies, F-measures, and a variety 
of other statistics [24,26], ROC curves, area under ROC,  
and cost curves [7], which support evaluation of model per-
formance as a function of misclassification costs. While 
these visualizations are commonly used in the machine 
learning community, they are restricted to binary classifica-
tion tasks for practical purposes. More importantly, they do 
not directly support iterative improvement of a classifier. 
To facilitate the use of statistical classifiers within systems, 
researchers have tried to visualize data and mathematical 
representations of the classification model. For example, 
one approach is to plot the data instances or cases in some 
projection of feature space and to visualize the boundaries 
predicted among classes [13, 22]. This approach generalizes 
across algorithms but is limited in that it does not reveal 
insights about the internal operation of algorithms. Ware et 
al. showed that people can produce better classifiers than 
automatic techniques [27] when assisted by a tool that pro-
vides visualizations about the operation of specific machine 
learning algorithms such as decision trees [2], naïve-Bayes 
[3], SVMs [4], and HMMs [6].  



Figure 1. From probabilities to classification boundaries via a
cost matrix.  Probabilities across each class (left) are combined 
with the cost matrix to generate decision boundaries (right) 
that capture a designer’s preferences about classification. 

SPECIFYING FINE-GRAINED PREFERENCES 
We consider a general multiclass classification problem, in 
which the goal is to build a classifier that can accurately 
assign a label, out of ܿ different choices, to a test data point. 
Such classification tasks can be performed by first training 
a classifier from some training corpus and then applying the 
classifier to unseen test data points. This is typical of the 
use of ML within HCI applications. 

Many researchers rely heavily on the overall classification 
accuracy of predictive models, often coupled with a consid-
eration of the lift in classification accuracy provided by the 
predictive models over the accuracy of predictions generat-
ed by a marginal model that classifies according to the 
background statistics of classes. This classification accura-
cy is calculated by taking the number of correctly labeled 
instances of test data divided by the total number of in-
stances the model has tried to classify. Given a confusion 
matrix, classifier performance can be expressed as the sum 
of test instances correctly classified, and thus placed on the 
diagonal, divided by the sum of all values in the matrix.  

For most real-world problems, achieving perfect classifica-
tion accuracy is usually impossible. For a variety of rea-
sons, some cases will usually be incorrectly classified. 
While the classification accuracy metric treats each mis-
classified instance equally, real-world scenarios often make 
different misclassifications more or less costly or desirable. 
For instance, in junk email filtering, misclassifying junk as 
regular email is typically less costly than misclassifying 
regular email as junk. There are many examples of HCI 
applications where the costs of misclassification are non-
uniform across classes and these situations highlight the 
potential value of creating tools that could allow system 
designers—as well as end users—to specify their prefe-
rences about classification in a fine-grained manner. Re-
finements to performance achievable via the use of such 
tools may yield more value than efforts aimed at increasing 
a singular measure of overall classification accuracy. 

In the most general setting, a classifier generates ܿ different 
likelihood scores (denoted ,ଵ݌  … , ௖݌ ), for each test case 
which correspond to each of the ܿ  possible class labels. 
These scores reflect the confidence of assigning each par-
ticular label to the case and can be easily transformed into 
probabilities using appropriate normalizing techniques (see 
[21] for example). Here, we assume that these scores have 
been appropriately normalized. Hence,  ݌௜ is the probability 
that a test case belongs to class i. In the simplest form, each 
test point is assigned the label with the maximum score. 

To enable users to specify finer-grained preferences about 
the process of assigning cases to classes, we leverage prior 
work on Bayesian decision theory [8]. This methodology 
depicts the preferences over the classifiers using values that 
denote the cost or penalty incurred when a data point is 
misclassified. Since users can specify a cost value for each 
cell in the confusion matrix generated by the model, we can 
define a symmetric ܿ  ൈ ܿ structure known as the cost ma-

trix. More formally, we denote parameters ݐݏ݋ܥ௜௝ as cost of 
misclassifying a test case as class j, when its true class was 
i. We represent the costs for all i and j as a real-valued cost 
matrix ࡯ ൌ  ௜௝൧, where the entry in ith row and the jthݐݏ݋ܥൣ
column corresponds to ݐݏ݋ܥ௜௝.  

Given these costs, a decision-theoretic analysis estimates 
the expected cost or risk of assigning a class label to the test 
data point by considering the probability distribution output 
from the classification model for each test case. In particu-
lar, the risk of assigning a label combines the classification 
output with the misclassification cost by considering the 
probability that the data point belonged to the other classes. 
The risk of assigning label j to each case can be written as: 

௝݇ݏܴ݅ ൌ෍݌௜ · ௜௝ݐݏ݋ܥ

஼

௜ୀଵ

 

The test case is assigned a label that has the minimum risk. 
The labeling of the cases based on minimizing risk can be 
viewed as identifying decision boundaries for classification 
of cases.  Such boundaries shift with changes in the values 
of  ݐݏ݋ܥ௜௝. Users can specify their preferences over the clas-
sifier space by refining the values of the costs. By increas-
ing the value of  ݐݏ݋ܥ௜௝ we shift a decision boundary so as 
to make the classifier require a higher likelihood of label j 
being the true class before assigning label j to a test case 
when its true label is i. Similarly lowering ݐݏ݋ܥ௜௝ tends to 
favor labeling data points as class j, accepting a case as a 
class at a lower inferred probability. 



 

Figure 1 shows how different cost matrices can result in 
different classification boundaries. The figures on the left 
depict the estimated probabilities over a 2-dimensional 
space for three different classes. These probabilities are 
derived from an underlying classification system that was 
built using a training corpus. We compute an expected cost 
of using the classifiers on the test sets by combining these 
probabilities with different cost matrices in order to produce 
different classification boundaries. We see that different 
settings of cost shift the boundary in order to minimize the 
classification risk. 

Unfortunately, specifying such fine-grained preferences via 
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large. 
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in 
complex, non-linear ways which is often unpredictable, 
even to expert users. In some scenarios, one might estimate 
such parameters using monetary considerations (such as 
direct profit or loss). However, such considerations are hard 
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.  

MANIMATRIX 
ManiMatrix is an interactive system that allows users to 
directly manipulate the confusion matrix in order to specify 
preferences and explore the classification space. The system 
consists of a visualization and control interface joined with 
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make 
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).  

Interacting with the Confusion Matrix 
At the core of ManiMatrix is a confusion matrix, which 
represents classification results by aggregating instances 
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted 
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem. 

The confusion matrix is a common visualization because it 
is easy to interpret and can be used with any classification 
algorithm. Other visualizations may also serve as the basis 
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as 
future work. 

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases 
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they 
want to have as small a number as possible in the middle 
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion 
matrix. When users move the mouse pointer over a cell, 
ManiMatrix shows a green up arrow and a red down arrow 
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in 
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the 
user request. This is done at interactive rates and users re-
ceive immediate feedback. 

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users 
that the request is not feasible. For example, Figure 2b 
shows the new confusion matrix after the user clicked on 
the down button from the middle left cell. To facilitate large 
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button. 

Operations, even on a single cell, typically lead to changes 
in other parts of the matrix. To show changes in each cell, 
ManiMatrix provides feedback by highlighting the cells 
whose values have changed; green represents an increase 
and red a decrease. The magnitude of change is represented 
by the opacity; the bigger the difference is, the more opaque.  

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that 
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up 
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Figure 2. Interacting with ManiMatrix. 



and down operations are not necessarily reversible. For 
example, clicking on the up arrow from the middle left cell 
in Figure 2b does not necessarily return to the original ma-
trix shown in Figure 2a. Hence, ManiMatrix supports undo 
(Ctrl-Z) and redo (Ctrl-Y) to enable users to roll back states.  

A change in one cell affects one or more other cells. When 
a cell is changed in an indirect manner, users may want to 
encourage the cell value to be changed in a specific direc-
tion. For example, while preventing the cloudy days from 
being classified as rainy days, users may also want to speci-
fy that as many cloudy days as possible should be classified 
correctly. ManiMatrix supports this by allowing users to 
specify the desired direction of the value changes for each 
cell. As opposed to the strong constraint of directly incre-
menting or decrementing a cell, these hints are biasing cues. 

When users press the Control key on the keyboard, icons of 
the up and down buttons change so that users can lock the 
cell with a desired direction (Figure 2c). Once users click 
on the direction button with the Control key pressed, Ma-
niMatrix adds a direction lock icon at the top left corner of 
the cell to show that a lock is set for that cell (Figure 2d). 
Figure 3 illustrates the effects of the use of the direction 
lock; clicking on the down arrow from the middle left cell 
with the direction lock set in the center cell (Figure 3, left) 
gives a bigger value change in the center cell than the one 
without the direction lock (Figure 3, right). 

When the lock is set, the clear lock button is shown be-
tween the up and down buttons (Figure 2d) so that users can 
clear the individual lock set in the cell. Users can also clear 
all of the direction locks using the Clear Up/Down button at 
the bottom of the interface. 

Learning Preferences from User Interactions 
Now that we have described the functionality and operation 
of the interface, we present the methodology we use to 
modify the cost matrix in response to user preferences so as 
to achieve desired classifier behavior.  

We first derive an objective function parameterized by the 
cost matrix. This function represents how well a given cost 
matrix matches the user intention. Thus, we can aim to sa-

tisfy user intentions by modifying the current cost matrix 
such that the value of the objective function increases. We 
use a gradient-ascent methodology. Specifically, given an 
objective function, we compute gradients with respect to 
the parameters of the cost matrix and take a step in a direc-
tion that would increase the value of the objective function.  

Objective Function 
The objective function reflects how well a cost matrix satis-
fies the user’s preferences, as expressed by sequences of 
refinements. Since users are directly manipulating the con-
fusion matrix, and they focus on how individual cases are 
being classified, we express the objective in terms of a fit-
ness function over every case. 

When users click on the up or down arrow in the confusion 
matrix, they express a desire for the number of instances in 
that particular cell to change. In response to a user’s input, 
we compute a desirable state ࢚ every case should be in. This 
state is a vector with dimensions equal to the number of 
classes. Similarly, given the current cost matrix, we also 
compute the current state of every case (represented as ࢕). 
This state vector is a direct function of the current cost pa-
rameters. We include a detailed mathematical description of 
these states in Appendix A. Given these original and target 
states, our objective function is the sum of individual fitness 
functions over all N data points: 

݁ݒ݅ݐ݆ܾܿ݁݋ ൌ ෍݂݅ݏݏ݁݊ݐሺ࢚௡, ௡ሻ࢕
ே

௡ୀଵ

 

The fitness function applied to each point measures how 
well that point aligns with user preferences. In particular, 
the fitness function measures how ‘near’ the current state ࢕ 
is to the target state ࢚. This, ‘nearness’ property can be cap-
tured by the negative of KL-divergence, which is used often 
as a means of comparing probability distributions [5,8]. 
This can be formally represented as: 

,࢚ሺݏݏ݁݊ݐ݂݅  ሻ࢕ ൌ  ෍െ ݐ௜݈݃݋
௜ݐ
௜݋

௖

௜ୀଵ

 

Note that the maximum value attained by the fitness func-
tion is zero and is achieved when the current state ࢕ is same 
as the target state ࢚. In all other cases, the fitness function 
has a negative value.  

Given this objective function, we compute gradients and 
modify the cost matrix such that we increase the value of 
the objective function. Appendix B shows how the gra-
dients of the objective function with respect to the costs can 
be computed. These gradients provide directions which 
promise to increase the value of the objective function. 

Aside from the direction of movement, we also consider 
another parameter: the step-size, or how much we should 
move in the ascending direction. In our work, we employ 
binary search in order to determine the step-size. Specifical-
ly, the system determines a step size such that the number 

   
Figure 3. Effects of the direction lock. The down arrow was
pressed for the cell in the middle row and the leftmost column.
The result with the directional lock (left) showed much bigger
gain than case without direction lock (right). 



 

in the particular cell where the user pressed the arrow key 
increments or decrements exactly by one.  

This search for the step size only considers the strong con-
straints and not the biasing cues, as the idea is that the 
strong constraints need to be satisfied while both the bias-
ing cues and strong constraints are used to compute the 
ascent direction. Finally, in case the binary search does not 
find a step size that results in the required change, the algo-
rithm flags an “infeasible” condition. If a feasible step size 
 :is found, then the cost parameters are updated as follows ߙ

௜௝௡௘௪ݐݏ݋ܥ ൌ ௜௝ݐݏ݋ܥ ൅ ߙ ·
݁ݒ݅ݐ݆ܾܿ݁݋ ߲
௜௝ݐݏ݋ܥ ߲

 

We can think of the whole procedure as a type of human-in-
the-loop optimization. The user interacts with the system 
and that interaction determines the ascent direction, while 
the system carries out optimization and determines the cor-
rect step size to take. This numerical procedure in conjunc-
tion with the interactive visualization results in a system 
that users can interact and modify classifiers according to 
their own preference. 

Avoiding Overfitting and Generalization on Unseen Data 
One of the concerns in building and using statistical clas-
sifiers is overfitting. Carrying out too many operations and 
fine-tuning of classifiers just based on the training set can 
lead to poor performance on previously unseen test cases.  

In order to avoid overfitting and to guarantee good genera-
lization, we employ a classic leave-one-out technique to 
generate the confusion matrix that users interact with. 
Every case in the training set is classified using a classifier 
trained using the rest of the cases, and the confusion matrix 
summarizes these leave-one-out results. Operations carried 
out on the leave-one-out matrix are statistically robust. 
Thus, we expect that all of the operations performed via 
ManiMatrix will generalize to the other unseen points [9].  

USER STUDY 
We conducted a user study to explore how ManiMatrix 
influences the performance of users trying to adjust a model 
and attain specific configurations of the confusion matrix. 
We compared the use of the prototype with the more tradi-
tional method of directly specifying values within a cost 

matrix. We implemented the CostMatrix interface (Figure 
4) that allows users to directly edit cell values in a separate 
pane from the confusion matrix. When users click on a cell, 
CostMatrix provides a text box for them to enter a value. 
After specifying one or more new values, users can execute 
their changes by pressing the Execute button, which up-
dates the confusion matrix view on the left. 

We tested the interfaces with two different sized problems 
to investigate how well they scale. We also explored the 
effects of providing (color) feedback that shows how each 
cell within the confusion matrix changed in each iteration. 

Methodology 
We ran the study as a 2 (Interface: ManiMatrix vs. CostMa-
trix) × 2 (Feedback: Color vs. NoColor) × 2 (Size: Small vs. 
Large) within-subjects design. Small problems were 3-class 
problems (a 9-cell confusion matrix; e.g., Figure 2) and the 
Large ones were 6-class problems (a 36-cell confusion ma-
trix; e.g., Figure 5). We independently counter-balanced the 
Interface and Feedback manipulations, and ran the Small 
problem before the Large one within each condition. We 
explained each interface to participants the first time they 
used it, and had them do a practice task with the Small 
problem before performing test tasks with the interface. To 
keep the study at a reasonable length, we imposed a time 
limit for each task: 2 minutes for the Small problem and 4 
minutes for the Large one. If participants hit the time limit, 
our study application automatically stopped them and took 
the confusion matrix at that point as the final answer.  

We tested the conditions with 2 different tasks. In one task, 
we provided the user with a specific target confusion matrix, 
which they were asked to match using the interface (Figure 
5 Left). These target matrices were created by randomly 
adjusting values in the cells of the underlying cost matrix 
for each problem. In the other task, we instead specified 
that the participant should aim to increase or decrease the 
values as much as possible in certain cells of the matrix 
(Figure 5 Right). We created these by generating ecologi-
cally valid scenarios such as considering the identification 
of certain classes as highly important or maximizing separa-
tion between two groups of classes. While we could have 
probably created an arbitrary problem to test the interfaces, 

  
Figure 5. Our two tasks: a fully specified target confusion
matrix (left) and a more abstract, but more realistic desire to
move the value of certain cells in certain directions (right). 

 
Figure 4. CostMatrix interface with the associated confusion
matrix view on the left. 



we found it easier to work with data from an existing prob-
lem. In our experiments, we used a subset of Newsgroup-20 
[1] to generate the 3-class problem and a subset of Caltech-
101 [11] dataset to generate the 6-class problem. The under-
lying classification was based on Gaussian Processes and 
we use leave-one-out confusion matrices in the study.  

To counter-balance the order of Interface and Feedback, we 
prepared 4 sets of tasks; each set consisted of 4 tasks (2 for 
the Small problem and 2 for the Large one). Since we were 
not trying to compare efficacy across tasks, we always 
tested the first task before the second one.  

Each task was presented as a matrix (Figure 5) at the left 
side of ManiMatrix or CostMatrix in our study application. 
When participants were ready to begin, they pressed the 
“Start" button. Upon the completion of each task, either 
when participants clicked the “Done” button or when the 
task timed out, the study proceeded onto the next task. 

We logged all actions and collected several metrics while 
participants performed the tasks. These include task com-
pletion time as well as the number and type of operations 
performed in each interface. We also logged the cost and 
confusion matrices after each operation so that we could 
calculate the overall increase (or decrease) in quality of the 
confusion matrix at the end of the trial, as well as locate the 
maximum gain seen during the course of each trial. At the 
end of the study, we asked participants to complete a ques-
tionnaire to collect feedback about their experiences. 

Participants and Apparatus 
We recruited sixteen participants via an internal mailing list 
for those interested in machine learning at a local software 
company. The average age of participants was 33.4, ranging 
from 21 to 48 years. 8 of the participants were researchers, 
4 were interns, and 4 were software developers. All had 
worked on at least one machine learning project.  

We ran participants in pairs, with each working on a 3.16 
GHz quad-core Dell T5400, with 8 GB RAM and 512 MB 
Video memory, running Windows XP, and using 24” Dell 
monitors at a resolution of 1920×1200. Since we had to put 
maximum of 3 matrices for the CostMatrix interface, the 
size of each matrix was 618×618. The study lasted 90 mi-
nutes, and participants were given a gratuity for their ef-
forts. 

Results: Learning Classification Preferences 
We explore the results of our study in three parts. First, we 
analyze performance metrics to explore efficacy of each of 
the interfaces. Then, we inspect behavioral results to better 
understand usage within the various conditions. Finally, we 
look at subjective ratings and comments. 

Performance Results 
We first looked at core participant performance within our 
various conditions using three different dependent meas-
ures. For each of these, we used a mixed-model analysis of 
variance (ANOVA) with Interface, Feedback, and Size as 
fixed effects. We included Participant and Task as random 
effects. Modeling Participant accounts for variation in indi-
vidual performance, and modeling Task accounts for any 
difference in difficulty of the two task formulations.  

We first examine task completion time, which is measured 
as the time elapsed between the initial presentation of the 
problem to the moment the participant clicked on the 
“Done” button to commit their answer. When participants 
bumped up against the time limit for each of the tasks, we 
took that upper bound as their completion time. Since the 
times were positively skewed, we performed a log trans-
form of the data prior to analysis. We found a significant 
effect of Interface (F1,233=45.83, p<.001), with ManiMatrix 
leading to faster performance than CostMatrix (103.7 vs. 
141.8 secs, respectively). Participants hit the deadline more 
when using CostMatrix than for ManiMatrix (3.25 vs. 
1.625, respectively, on average across participants).  

We also observed a significant effect of Size (F1,233=13.31, 
p<.001), with the Small problems taking participants less 
time to complete than the Large ones (106.7 vs. 138.8 
seconds, respectively). Furthermore, we saw an interaction 
between Interface and Size (F1,233=12.55, p<.001). Post-hoc 
analyses with Bonferroni correction reveal that this was 
driven by a significant slow down when participants moved 
from the Small to the Large problem set in the CostMatrix 
condition, but not when they were using ManiMatrix. See 
Figure 6 (left) for a summary of the means. Interestingly, 
we did not find a significant effect for Feedback. 

Second, we looked at the magnitude of quality increase in 
each confusion matrix. For the task in which we presented 
the target matrix, we calculated this by taking the difference 

 
Figure 6. Means of performance metrics show ManiMatrix allows users to perform tasks faster (left) and more effectively (center
and right) than with CostMatrix. Error bars represent standard error. 
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in distance between the initial and target matrix and the 
distance between the final and the target matrix. For the 
task in which we presented desires as values on specific 
cells, we summed the differences between the final and the 
initial matrix, in the cells of interest. To be able to compare 
the Small and Large problems more easily, we further nor-
malized these values by the total number of instances with-
in each matrix, resulting in a percentage value. Larger 
values represent better performance for both tasks.  

Again, our ANOVA revealed a significant effect of Inter-
face (F1,233=7.35, p=.007), with ManiMatrix seeing a larger 
gain than CostMatrix (14.4% vs. 9.7%, respectively).  The 
analysis also revealed a significant effect of Size 
(F1,233=70.62, p<.001), with the Large problems seeing a 
larger gain than the Small ones (19.4% vs. 7.9%, respec-
tively). See Figure 6 (center) for a summary of the means. 

Finally, as participants did not always know when to stop 
trying to optimize their solution, we observed that they 
sometimes ended the task with a confusion matrix that was 
of lower quality than another state that they had passed 
through during the course of the session. Hence, we also 
looked at the maximum quality increase observed during 
the course of a trial. We again found a main effect of Inter-
face (F1,248=.035, p=.035) as well as of Size (F1,248=75.74, 
p<.001), with valences of the effects in the same direction 
as before. See Figure 6 (right) for the mean values. 

In summary, we have evidence suggesting that ManiMatrix 
is not only faster, but also leads to better performance than 
manipulation of a more traditional CostMatrix interface. 
Additionally, it was interesting to see the interaction be-
tween Interface and Size, at least with the task time metric. 
We were encouraged to find that ManiMatrix does not seem 
to impose significantly increased overhead with the growth 
of the problem, as opposed to the CostMatrix interface, 
which was associated with a significant slowing on larger 
tasks. While we had initially expected to see differences in 
performance caused by the Feedback manipulation, we saw 
no such effects, and will return to this finding below. 

Behavioral Results 
In order to better understand strategies that participants 
used to complete their tasks, we explored several behavioral 

metrics. First, we looked at the use of undo and redo, which 
were used both to correct errors and to explore the space of 
tradeoffs that exist when adjusting the various parameters. 
Performing analyses that were similar to those used for the 
performance metrics, we found a significant effect of Inter-
face for both Undo (F1,233=48.51, p<.001) and Redo 
(F1,233=6.15, p=.014). ManiMatrix showed more Undo op-
erations on average (7.04 vs. 2.92, respectively) but fewer 
Redos (0.09 vs. 0.41, respectively). This is consistent with 
our observations that participants tended to use Undo in 
order to correct errors and roll back in ManiMatrix, since 
the operations were not reversible (i.e., clicking on the 
down arrow and then the up arrow does not necessarily 
return one to the initial matrix). However, they seemed to 
use Undo to compare values in the CostMatrix condition, 
hence the increased use of Redo to return to states. 

We also looked at the number of total operations used in the 
various conditions. This was counted as the number of 
times the user executed a set of constraints in either inter-
face condition. This analysis showed a significant effect of 
Interface (F1,233=117.23, p<.001) with ManiMatrix leading 
to far more operations than CostMatrix (87.9 vs. 13.6, re-
spectively). This makes sense as operations in ManiMatrix 
were more lightweight and led to greater granularity in ex-
ploration. In general, it also implies that participants tended 
to both be a little slower with operations, but also set mul-
tiple simultaneous constraints when using CostMatrix, po-
tentially leading to slightly lower exploration.  

Further, we counted the number of infeasible operations 
(i.e., the user set constraints that could not be satisfied) and 
found that participants hit about 5 of these per task. While 
this may seem reasonable, given that participants would use 
the constraints to push the bounds of what the model could 
do until it could do no more, exploring the feasibility of 
better satisfying constraints is a challenge for future work. 
Analysis of the number of operations such as clicks or lock-
ing the values within the cells for each ManiMatrix condi-
tion yielded no significant effects or interactions.  

Subjective Responses and Strategies 
After they had performed all tasks, we asked participants 
several questions to acquire subjective ratings on the differ-
ent Interface conditions. We conducted paired t-tests to 

 
Figure 7. Means of subjective ratings show that users found ManiMatrix easier to use (left Q1), felt that it helped them get to bet-
ter answers (left Q2), and liked the system better (left Q3). Users also found the system easier to use when Color  Feedback was 
provided (right Q1) and felt that the Feedback helped them get to better answers (right Q2). Error bars represent standard error. 
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compare responses across the conditions. We found signifi-
cant differences on all three questions: It was easy to use 
this system (t15=5.35, p<.001), I was able to find answers 
pretty close to the target with this system (t15=3.05, p=.008), 
and I liked to use this system (t15=3.51, p=.003). All subjec-
tive responses preferred ManiMatrix over CostMatrix and 
means for the responses are shown in Figure 7. 

We also had participants rate the Feedback conditions re-
gardless of the interface, and found a similar preference for 
having the Color Feedback based on the first two questions 
(t15=4.25, p<.001 and t15=2.30, p=.03, respectively), even 
though performance data does not seem to indicate that this 
helped users very much. 

DISCUSSION 
The results of the user study are encouraging and show that 
participants used ManiMatrix to effectively construct clas-
sifiers aligned with target preferences. This highlights the 
promise of interactive optimization for steering classifica-
tion systems. We now reflect about observations and oppor-
tunities that arose over the course of this work. 

Basic Strategy 
When asked to describe the process they used, participants 
reported common strategies. Regardless of the interface, 
they first looked for the cells with biggest differences be-
tween the target and the current. Then, with ManiMatrix, 
they click on the up and down buttons to make that differ-
ence smaller. With CostMatrix, participants adjusted the 
cells they wanted to penalize or reward; increased the costs 
of cells whose values needed to be reduced, and decreased 
the costs of the cells whose values needed to be increased. 

We observed that lock usage varied between participants. 
Some used much more aggressively than others. While a 
few participants abandoned it after a couple of trials, most 
participants frequently used at least one lock especially for 
the Large problem. A participant who slightly favored 
CostMatrix in their feedback liked the lock and wanted to 
have the lock on the output confusion matrix in the Cost-
Matrix interface so that he could not commit changes that 
would break the lock.  

Interactive Optimization 
We observed that participants were surprised and frustrated 
more often by the result of CostMatrix. We assert that this 
is because participants had to manipulate the cost matrix to 
control the confusion matrix. While it is easy to decide 
which cells to penalize or reward, it is non-trivial to choose 
the right cost to appropriately penalize or reward cells. 
Even though we provided participants with the reasonable 
cost value range (between 0 and 2), participants had to 
spend time understanding the effect of each cost change on 
the entire matrix. For example, several participants gradual-
ly changed the cost of one cell to check the effect. While a 
high cost value works reasonably well to reduce the value 
of the target cell, participants had a hard time figuring out 
how to change the costs to increase the value, and an even 
harder time with achieving simultaneous improvements. 

Compared to ManiMatrix, CostMatrix has two inherent 
burdens. First, participants had to manage two matrices 
rather than one, and retain the mapping between the two. 
For example, several participants used their fingers to map 
cells between the matrices. Second, it is considerably chal-
lenging for participants to manipulate multiple cost parame-
ters simultaneously. ManiMatrix on the other hand allows 
participants to directly work on the confusion matrix and 
the embedded optimization routine automatically estimates 
change across all the cost parameters. 

Color Feedback 
Participants reported that the basic strategy was the same 
with or without (Color) Feedback. While we found no sig-
nificant effect of Feedback in terms of task completion time, 
12 out of 16 participants indicated that color feedback was 
helpful because, without color feedback, they had invest 
more time and effort to identify drastic, adverse value 
changes. Several participants reported that they resorted 
more to undo and redo operations to manually compare old 
values with new ones in the conditions with no feedback. 
Some of the participants who did not use the color feedback 
mentioned that it was distracting. One participant wanted to 
see the feedback only for cells that had locked directions 
because those cells were important. For simplicity, we did 
not provide the aggregated changes for each row or column, 
or the entire matrix. However, it may be useful to provide 
additional information summarizing changes. Overall, we 
believe that it is important to convey changes at every itera-
tion. Exploring such visualizations remains future work. 

CONCLUSION 
We presented ManiMatrix, an interactive system that allows 
interactive refinement of classification boundaries in a mul-
ticlass setting. The system weaves together visualization, 
interaction, and fast optimization routines to enable users to 
steer classification behavior according to their preferences. 
A user study indicates that methodology can be used to 
identify numerical parameter settings far better and more 
quickly than manual tuning. 

ManiMatrix is the result of an initial attempt to design a 
system that enables system designers to directly encode 
their preferences about the performance of a classification 
system as well as to provide insights about the structure of 
the classification problem. In future research, we aim to 
identify richer forms of interaction and embed them into 
other aspects of ML, such as the allocation of discriminato-
ry effort during the construction of predictive models.  
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APPENDIX A 
The current state for a data point is a function of risk and is 
mathematically represented using the softmax function: 

࢕ ൌ
ሾexpሺെܴ݅݇ݏଵሻ, . . , expሺെܴ݅݇ݏ௖ሻሿ
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Note, that expሺ·ሻ  is a monotonically increasing function 
thus, the vector ࢕ is a normalized representation in which a 
high value corresponds to the class with low risk. The target 
state for each data point represents the ideal state given the 
user interaction. In the absence of interaction, the target 
state should match the original state. However, if the user 
seeks another state they can interact and then the target state 
of a particular point depends upon the user interaction.  

Consider the case when the user presses the up arrow or 
locks the up direction for a cell (i, j) in the confusion ma-
trix. In this case we want that all the data points with true 
class i be classified as j. This implies that ܴ݅݇ݏ௝  for all 
those points be minimum, and we consequently assign the 
target vector ࢚ as zeros everywhere except the jth dimension 
which is set to one. 

Similarly, when a user presses the down arrow key or bi-
ases the (i, j) cell to go down, we seek a configuration 
where ܴ݅݇ݏ௝ is not minimum. Consequently, we set all the 
entries of the target vector ࢚ to be equal to ࢕, except for the 
jth dimension which is set to zero.  

For the rest of the data points (which are unaffected by user 
interactions), we always set the target vector equal to the 
original vector. This helps regularize the problem by imply-
ing that we seek a configuration that satisfies the user prefe-
rence but is closest to the original state.  

APPENDIX B 
The gradients of the objective function with respect to the 
 :௜௝ are written asݐݏ݋ܥ
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