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Abstract
Objectives: To quantify differences between (1) stratifying patients by predicted disease onset risk alone and (2) stratifying by predicted disease 
onset risk and severity of downstream outcomes. We perform a case study of predicting sepsis.
Materials and Methods: We performed a retrospective analysis using observational data from Michigan Medicine at the University of Michigan 
(U-M) between 2016 and 2020 and the Beth Israel Deaconess Medical Center (BIDMC) between 2008 and 2012. We measured the correlation 
between the estimated sepsis risk and the estimated effect of sepsis on mortality using Spearman’s correlation. We compared patients strati
fied by sepsis risk with patients stratified by sepsis risk and effect of sepsis on mortality.
Results: The U-M and BIDMC cohorts included 7282 and 5942 ICU visits; 7.9% and 8.1% developed sepsis, respectively. Among visits with 
sepsis, 21.9% and 26.3% experienced mortality at U-M and BIDMC. The effect of sepsis on mortality was weakly correlated with sepsis risk 
(U-M: 0.35 [95% CI: 0.33-0.37], BIDMC: 0.31 [95% CI: 0.28-0.34]). High-risk patients identified by both stratification approaches overlapped by 
66.8% and 52.8% at U-M and BIDMC, respectively. Accounting for risk of mortality identified an older population (U-M: age¼66.0 [interquartile 
range—IQR: 55.0-74.0] vs age¼63.0 [IQR: 51.0-72.0], BIDMC: age¼ 74.0 [IQR: 61.0-83.0] vs age¼ 68.0 [IQR: 59.0-78.0]).
Discussion: Predictive models that guide selective interventions ignore the effect of disease on downstream outcomes. Reformulating patient 
stratification to account for the estimated effect of disease on downstream outcomes identifies a different population compared to stratification 
on disease risk alone.
Conclusion: Models that predict the risk of disease and ignore the effects of disease on downstream outcomes could be suboptimal for 
stratification.
Key words: patient stratification; downstream outcomes; causal effect estimation; heterogeneous effects. 

Introduction
Predictive scoring methods are designed to help clinicians tar
get treatments selectively with the ultimate goal of improving 
patient outcomes. To date, prevailing patient stratification 
efforts, whether relying on heuristic scores or machine learn
ing models are aimed at identifying individuals at risk of 
developing disease. Such a stratification approach overlooks 
the heterogeneous effects of disease on patient outcomes.1–15

Our study addresses this oversight in current predictive scor
ing systems and presents steps forward for reformulating 

patient stratification to consider both likelihood and severity 
of illness.

We hypothesize that the optimal way to define patient 
stratification will depend on the model’s use case. In our 
example of selectively targeting prevention efforts for some 
disease due to resource constraints, our ultimate goal is to 
reduce patient mortality. A policy of triaging attention and 
resources by risk of developing disease makes an implicit 
assumption that the risk of the onset of a disease is represen
tative of the risk of experiencing poor outcomes due to 
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developing disease. However, the validity of this assump
tion—and the implications of its potential invalidity for pri
oritizing interventions—have not been well studied.

Patients at low risk of developing disease may be likely to 
suffer death or complications should they develop disease. 
Under unavoidable constraints on both attentional and in- 
world resources, stratifying purely on the risk of disease may 
delay treatment for those who may be less likely to develop 
disease but more likely to suffer complications or die should 
they acquire the disease. In real-world clinical scenarios, tri
age typically considers the joint likelihood of the event and 
downstream consequences when allocating resources.16,17

For example, during the COVID-19 pandemic, vaccine allo
cation plans were not determined solely by an individual’s 
propensity to get infected, but also by an individual’s risk 
of COVID-19 complications and potential to spread to 
others.17–19 However, the importance of such a methodology 
has not been considered in predictive scoring. We note partic
ularly that researchers pursuing AI in medicine have focused 
on leveraging machine learning for predicting the likelihood 
of illness, despite the relevance of severity of outcomes for 
clinical decision-making.20

We study the importance of accounting for downstream 
consequences using a proof-of-concept study in the context 
of patient stratification tools for sepsis. Over the last decade, 
numerous patient stratification tools have been developed to 
help with early warning and response to the rise of sep
sis.15,21–25 These tools consistently focus on the risk of devel
oping sepsis15,21–25 and ignore disease severity as measured 
by the effect of sepsis on mortality. To probe the potential 
shortcomings of patient stratification based on likelihood of 
disease alone, we measured the heterogeneity in the effect of 
sepsis on risk of mortality within 2 large clinical cohorts and 
compared these results with the estimated risk of developing 
sepsis.

Materials and methods
Study cohort
We considered 2 retrospective cohorts extracted from elec
tronic health record (EHR) datasets. The first included adults 
admitted to Michigan Medicine at the University of Michigan 
(U-M) between 2016 and 2020. In our primary analysis, we 
focused on only admissions to the intensive care unit (ICU). 
The second cohort included adults admitted to the ICU at 
Beth Israel Deaconess Medical Center (BIDMC) between 
2008 and 2012.26 Further inclusion and exclusion criteria 
can be found in the Supplementary Material S1. In a secon
dary analysis involving the U-M dataset, we did not limit our
selves to ICU-only admissions and included admissions 
across the entire hospital (see Supplementary Material S6.3). 
However, our primary analysis only considered ICU encoun
ters since the BIDMC dataset only contained ICU encounters. 
The use of the U-M dataset was approved by the institutional 
review board at U-M (HUM00176141). The BIDMC cohort 
is deidentified and available through Physionet.26

Outcome definitions
In the U-M cohort, we defined sepsis using a composite defi
nition based on meeting either (1) the clinical surveillance 
definition created by the Centers for Disease Control and Pre
vention (CDC) or (2) the Centers for Medicare and Medicaid 
Services (CMS) definition.27–30 Sepsis onset was defined as 

the later time of when either the Systemic Inflammatory 
Response Syndrome (SIRS) criteria or the organ dysfunction 
criteria were met (for those meeting the CMS definition) or 
the first time in which the CDC definition was met (for those 
not meeting the CMS definition). For the BIDMC cohort, 
information necessary to define the CDC definition could not 
be obtained. Instead, in line with past work, we used a prag
matic definition based on the Sepsis-3 criteria, defining onset 
time by identifying the time of the acquisition of a body fluid 
culture temporally contiguous to the administration of antibi
otics.15,31 For both cohorts, in-hospital mortality was identi
fied from discharge information, where mortality was 
documented as indicated by the entries in the EHR.

Feature extraction
To build accurate effect estimates, we considered relevant 
features that may act as confounders between the develop
ment of sepsis and in-hospital mortality. To do so, for all 
patient admissions, we extracted demographics, vital sign 
measurements, laboratory test results, and nursing score 
information, including Glasgow coma scores and sedation 
information, throughout the hospitalization up until dis
charge or when the sepsis criteria were met. In the U-M 
cohort, we also considered vital signs and comorbidities from 
encounters within the past year for making predictions. Data 
were processed using FIDDLE with the default settings (see 
further details in the Supplementary Material S2).32

Model development and evaluation: estimating 
sepsis risk and effect of sepsis on the risk of 
mortality
Developing sepsis has a direct effect on the risk of mortality, 
but this effect may be heterogeneous among patients. While 
past work has focused on estimating treatment benefits,33–35

we assumed a setting in which we aim to target some novel 
intervention not present in the available data (eg, additional 
monitoring) (Figure 1). We used machine learning and causal 
inference techniques to estimate an individual’s risk of sepsis 
and the increase in the risk of in-hospital mortality if the indi
vidual were to develop sepsis. We split the data for each 
cohort into development and evaluation cohorts (for details 
see Supplementary Material S1). Our model development 
pipeline for estimating the risk of sepsis and the effect of sep
sis on mortality is described below and summarized in  
Figure 2.

Figure 1. Assumed causal graph. The dashed lines represent causal 
relationships for the treatment that are not currently captured in the 
available data. Patient characteristics affect the risk of sepsis and 
mortality, all of which are fully observed in our data. Sepsis also affects 
the risk of mortality. Finally, there exists a potentially novel intervention 
currently not observed in the data. Our goal is to understand how to 
allocate interventions to patients to prevent sepsis and reduce the overall 
mortality rate.
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Estimating the risk of sepsis (sepsis risk)
We build on prior work in machine learning for predicting 
the likelihood of sepsis.4,36–38 To estimate an individual’s 
risk of sepsis, based on the success of past work, we trained 
an ensemble of XGBoost models for each cohort to predict 
the risk of sepsis at every hour (for details see Supplementary 
Material S3). Applied to held-out evaluation cohorts, we 
evaluated the sepsis risk models in terms of the area under 
the receiver-operator characteristic curve (AUROC) at the 
hospital admission level.4,22,36 To calculate the AUROC at 
test time, we used the maximum predicted risk score within 
the admission as the model’s prediction. We used the maxi
mum score since this mimics a use case in which a model flags 
patients as high-risk once they exceed some prespecified 
threshold; by taking the maximum we can sweep this thresh
old and calculate an ROC curve. We estimated the 95% CIs 
with 500 bootstrapped samples.

Estimating the effect of sepsis on the risk of 
mortality
Given the extracted confounders, to estimate the effect of sep
sis on in-hospital mortality risk, we used 3 tools for comput
ing conditional average treatment effects that adjust for 
confounding: (1) the S-Learner, (2) the X-Learner, and (3) 
the DR-Learner.39 We applied these techniques independ
ently to both cohorts (for training details see Supplementary 
Material S4). To validate each approach, we first evaluated 
the models’ ability to accurately predict mortality within 
both the population with sepsis and the population without 
sepsis in terms of the AUROC. We also performed a global 

null analysis, separately retraining causal models using ran
dom “treatment” assignments in both the septic and nonsep
tic groups.40,41 On held-out evaluation cohorts, we checked 
whether or not the models could recover a global null treat
ment effect (ie, mean squared error between estimated effect 
and 0 was zero). We estimated 95% CIs with 500 boot
strapped samples. In line with best practice, we ran all analy
ses using all 3 approaches, checking for consistency.39,41 We 
report results of the S-Learner in the main paper and include 
remaining results in the Supplementary Material S6.2.

Statistical analysis
Heterogeneity in the effect of sepsis on mortality
To inspect the effect of sepsis on in-hospital mortality risk at 
test time, we calculated the mean estimate for each admission 
across all windows. Here, and in subsequent analyses, we 
used the mean prediction instead of the maximum in order to 
remove bias due to longer admissions and to make the predic
tions between stratification schemes comparable since the 
time at which the maximum score for sepsis risk occurred did 
not always match the time of the maximum predicted effect 
of sepsis on mortality. We produced visualizations of the dis
tribution of these estimated effects and reported the median 
of each evaluation cohort. To quantify heterogeneity, we cal
culated the difference between the 90th and 10th percentile 
of estimated effect sizes.

Correlation between risk of having sepsis and its effect on 
mortality
We calculated Spearman’s correlation between risk of sepsis 
and effect of sepsis on mortality. To estimate the relationship 

Figure 2. Summary of experimental setup. We begin with the entire dataset for both cohorts (1) and then split the dataset (2) into subsets for model 
development and test-time evaluation (3a, 3b). For the U-M dataset, we split temporally to simulate a setting in which a model is trained using 
retrospective data and is used prospectively. For the BIDMC dataset, we split based on a random shuffle since dates of service are obfuscated. Using the 
development set, we train (4) an ensemble of XGBoost models to predict the risk of sepsis (5a, shown in red), each trained with a randomly sampled 1- 
hour window from the admission. We train the S, X, and DR learners to predict the effect of sepsis on mortality (5b, shown in blue). Using these models, 
we obtain predictions on the test set (6) that are used for downstream analyses (7a, 7b).
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between these variables at a per-admission level at test time, 
we aggregated all predictions by calculating the mean esti
mate for each admission across all windows. We estimated 
95% CIs with 500 bootstrapped samples.

We visualized the relationship between the risk of develop
ing sepsis and the effect of sepsis on mortality by plotting a 
random sample of patient data points as well as the mean 
and 95% CI of estimated effect of sepsis on mortality for 
each quintile of estimated risk of sepsis. We also visualized 
the empirical distributions of estimated effects for high-risk 
(ie, top 20%) and low-risk (ie, not top 20%) sepsis windows, 
respectively, where 20% was chosen to match the alert rate 
of existing sepsis risk stratification models.22

Differences in stratified patient populations
Finally, we compared the cohort of individuals selected by a 
model focused only on the risk of sepsis to one selected by 
weighing both risk of sepsis and estimated effect of sepsis (see 
Supplementary Material S6.2 for details). We stratified 20% 
of the patient population for intervention by either: (1) triag
ing individuals with the highest estimated risk of sepsis dur
ing their admission (Risk) or (2) triaging individuals based on 
the product of sepsis risk and estimated effect of sepsis on 
mortality risk during admission (Joint). We compared the 2 
triaged cohorts based on demographic information to under
stand what cohorts of individuals may be deemphasized if the 
effects of sepsis on mortality risk are unaccounted for. To 
further understand the differences in these populations, we 
also examined the mortality rate and incidence of comorbid
ities within quintiles stratified by risk of sepsis (Supplemen
tary Material S6.4).

Results
Model development sets included 106 064 U-M patient 
admissions (median age 57.0 years [interquartile range—IQR 
37.0-69.0]) and 13 864 BIDMC patient admissions (median 
age 65.7 years [IQR 53.2-78.1]) (Table S1). Of these admis
sions, 5391 (5.1%) developed sepsis and 2014 (1.9%) experi
enced in-hospital mortality in the U-M development cohort, 
while 1108 (8.0%) developed sepsis and 1231 (8.9%) experi
enced in-hospital mortality in the BIDMC development 
cohort.

Our final evaluation cohorts consisted of 7282 and 5942 
ICU stays in the U-M and BIDMC cohorts, respectively 
(Table 1). In the U-M evaluation cohort, 576 (7.9%) admis
sions developed sepsis and 574 (7.9%) admissions experi
enced in-hospital mortality. Within U-M, mortality rates 
were 21.9% and 6.7% for the septic and nonseptic popula
tions, respectively. In the BIDMC evaluation cohort, 483 
(8.1%) admissions developed sepsis, while 512 (8.6%) expe
rienced in-hospital mortality. Within the BIDMC, in-hospital 
mortality rates were 26.3% and 7.1% in the septic and non
septic populations, respectively.

For the task of predicting sepsis, our learned models 
achieved an AUROC of 0.69 (95% CI, 0.67-0.71) in the U-M 
cohort and 0.74 (95% CI, 0.72-0.77) in the BIDMC cohort. 
For the task of predicting mortality without sepsis and with 
sepsis, the S-Learner achieved AUROCs of 0.89 (95% CI, 
0.87-0.90) and 0.79 (95% CI, 0.74-0.83), respectively, in the 
U-M cohort and 0.87 (95% CI, 0.85-0.88) and 0.77 (95% 
CI, 0.73-0.82), respectively, in the BIDMC cohort. The 
global null test showed that all models can accurately predict 
null treatment effects, with the S-Learner performing best 
(Table S2).

The histograms of estimated effect of sepsis on mortality 
risk confirms that the downstream effect is both positive and 
heterogeneous in both datasets (Figure 3). The S-Learner esti
mated a median effect of sepsis on mortality of 6.19 percent
age points (pp) and 8.82pp in the U-M and BIDMC cohorts, 
respectively. The spread of estimated effect of sepsis on mor
tality between the 90th and 10th percentile was 15.4pp in the 
U-M cohort and 15.3pp in the BIDMC cohort. The X- 
Learner and DR-Learner led to similar results (see Supple
mentary Material S6.2).

Risk of sepsis and estimated effect of sepsis on mortality 
were weakly correlated in both datasets (U-M: 0.35 [95% CI, 
0.33-0.37] and BIDMC: 0.31 [95% CI, 0.28-0.34]). Within 
quintiles of sepsis risk, there is large variability in effect of 
sepsis on mortality (Figure 4A and B). Among patient win
dows at or above the 80th percentile of sepsis risk, sepsis had 
only a small estimated effect on the increased risk of mortal
ity (ie,<5pp) for 34.8% and 17.9% of patient windows in 
the U-M and BIDMC cohorts, respectively (Figure 4C and  
D). Meanwhile, for the remaining 80% of patient windows 
at lower risk of sepsis, developing sepsis was estimated to 
have a substantial increase in mortality risk (>20pp) for over 

Table 1. Evaluation cohort characteristics.a

U-M evaluation cohort (n ¼ 7282) BIDMC evaluation cohort (n ¼ 5942)

Female (%) 3242 (44.5%) 2603 (43.8%)
Median (IQR) age (years) 62.0 (48.0-72.0) 65.3 (53.0, 77.7)
Race

White 5942 (81.6%) 4296 (72.3%)
Black 767 (10.5%) 645 (10.9%)
Asian 172 (2.4%) 164 (2.8%)
Other or unknown 401 (5.5%) 837 (14.1%)

Ethnicity
Hispanic or Latino 176 (2.4%) 255 (4.3%)
Not Hispanic or Latino 6880 (94.5%) 5138 (86.5%)
Other or unknown 226 (3.1%) 549 (9.2%)

No. sepsis (%) 576 (7.9%) 483 (8.1%)
No. in-hospital mortality (%) 574 (7.9%) 512 (8.6%)

Within septic group (%) 126 (21.9%) 127 (26.3%)
Within nonseptic group (%) 448 (6.7%) 385 (7.1%)

a Characteristics of the evaluation cohorts for both datasets. Characteristics of the development cohort can be found in the Supplementary Material S6.
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7.1% of patient windows for each cohort. These overall find
ings hold for the other causal inference techniques, with most 
models showing a weak correlation between risk of sepsis 
and effect of sepsis on mortality (see Supplementary Material 
S6.2). These results also hold on the entire inpatient U-M 
cohort (see Figures S4 and S5).

The top 20% of admissions prioritized by the Risk and 
Joint triage approaches overlapped by 66.8% and 52.8% in 
the U-M and BIDMC cohorts, respectively. The demo
graphics of the cohorts prioritized by each triage approach 
differed along several dimensions (Table 2). Consistently, the 
cohort of individuals identified by the Joint model was 

Figure 3. Estimated effect of sepsis on mortality. Estimated effect of sepsis on the risk of mortality across hospital admissions as estimated by the 
S-Learner. The average estimated effect is positive in (a) the U-M cohort and (b) the BIDMC cohort. Moreover, there is substantial heterogeneity in the 
estimated effect of sepsis on mortality.

Figure 4. Relationship between the risk of having sepsis and the effect of sepsis on mortality, as estimated by the S-Learner. The estimated effect of 
sepsis on mortality is larger for patients within higher quintiles of risk of sepsis [top: (a) U-M cohort, (b) BIDMC cohort]. Meanwhile, there are many 
patients at high risk of sepsis who are still estimated to have a low effect of sepsis on their mortality, as well as many patients who are low risk for sepsis 
but would be severely adversely affected from developing sepsis [bottom: (c) U-M cohort, (d) BIDMC cohort].
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significantly older than that identified by the Risk model, as 
demonstrated by the difference in median patient age within 
each cohort (U-M: 66.0 years [IQR: 51.0-72.0] vs 63.0 years 
[IQR: 55.0-74.0], BIDMC: 74.0 years [IQR: 61.0-83.0] vs 
68.0 years [IQR: 59.0-78.0], P<.05). This trend held across 
almost all causal inference techniques across both cohorts 
(Supplementary Material S6.2). In our analysis on the mortal
ity rate and comorbidity incidence within quintiles stratified 
by risk of sepsis, we found that the mortality rates and 
comorbidity incidences tended to be higher at the upper quin
tiles of sepsis risk (Supplementary Material S6.4). This can 
help explain why the effect of sepsis on mortality in this 
group is smaller, as this may represent a population that is 
sicker at baseline.

Discussion
Standard patient stratification identifies patients at greatest 
risk of developing a condition. Using such a stratification to 
then target additional resources or interventions often intro
duces an implicit erroneous assumption: prioritizing those 
most at risk of developing the condition is an ideal policy for 
allocating interventions that aim to reduce downstream mor
bidity and mortality. However, beyond risk of developing a 
condition (such as sepsis), benefit from treatment may also 
depend on the effects of developing the condition on down
stream outcomes (such as mortality).42 To surface a need to 
reformulate patient stratification in many areas of medicine, 
we undertook a proof-of-concept study for patient stratifica
tion for sepsis.

Across 2 clinical cohorts from different time periods and 
different hospitals, we found that the effect of developing sep
sis on risk of in-hospital mortality was heterogeneous. More
over, we consistently found that the risk of sepsis was not 
highly correlated with the effect of sepsis on mortality risk. 
These findings point to a limitation in standard patient 
stratification.

Measuring heterogeneity response to disease, we found 
that those most likely to develop sepsis may not always be 
more likely to experience poor outcomes due to it. Vice versa, 
many patients who would have the greatest increase in risk of 
mortality if they were to develop sepsis are not those most 
likely to develop sepsis. Allocating interventions to the 

former rather than the latter could delay interventions to 
those who would most benefit. We found that age consis
tently remained an important source of heterogeneity. Stand
ard patient stratification approaches may miss triaging older 
individuals who are adversely affected by the development of 
sepsis.

Although our analysis uses sepsis as a case study, our find
ings have broad implications when developing and evaluating 
patient stratification models for allocating interventions. For 
example, predictive models are being used to estimate the 
likelihood of numerous diseases in the hospital.4,43 The 
development and use of these models follow the same princi
ple of allocating treatments to those most at risk of develop
ing disease. However, the effect of developing disease on 
downstream complications, such as mortality, may be hetero
geneous. For example, the clinical presentation of COVID-19 
is heterogeneous, and preventative efforts should account for 
those who are most at risk of deterioration due to infection.44

Our work complements past attempts to identify these severe 
cases of the disease by reframing the problem as a combina
tion of the risk of acquiring a condition and the individual 
effect of that condition on adverse patient outcomes, with the 
goal of understanding how the disease may affect the likeli
hood of mortality.45

Recent work has estimated heterogeneous treatment effects 
for optimal intervention allocation but does not consider 
intermediate outcomes, instead focusing on settings where 
the treatment directly prevents the final outcome.34,35,46 In 
contrast, we consider a setting in which an intermediate out
come (eg, sepsis onset) can occur, and the treatment prevents 
the final outcome (eg, mortality) indirectly by preventing the 
intermediate outcome. As a result, it becomes important to 
account for the heterogeneous effects of the intermediate out
come on the final/downstream outcome, as we have high
lighted in this work. Doing so is especially important when 
there exists an intervention that could prevent the intermedi
ate outcome, but the data needed to estimate its effect on the 
downstream outcome are unavailable. For example, during 
the COVID-19 pandemic, the implementation of preventative 
efforts, such as novel vaccines, focused on addressing both 
the likelihood of acquiring the virus (ie, the intermediate out
come) and the potential for severe complications (ie, the 
downstream outcome).17–19 Alternatively, in settings where 

Table 2. Triaged cohorts characteristics.a

U-M (n¼1457) BIDMC (n¼1189)

Triaged by Risk 
model

Triaged by Joint 
model P

Triaged by Risk 
model

Triaged by Joint 
model P

Female (%) 461 (38.8%) 527 (44.3%) .006 553 (38.0%) 562 (38.6%) >.05
Median (IQR) age (years) 63.0 (51.0, 72.0) 66.0 (55.0, 74.0) <.001 68.0 (59.0, 78.0) 74.0 (61.0, 83.0) <.001
Race

White 1116 (76.7%) 1160 (78.9%) >.05 867 (72.9%) 824 (69.3%) .046
Black 220 (15.1%) 186 (12.8%) >.05 83 (7.0%) 101 (8.5%) >.05
Asian 25 (1.7%) 32 (2.2%) >.05 26 (2.2%) 41 (3.4%) .039
Other or unknown 96 (6.6%) 79 (5.4%) >.05 213 (17.9%) 223 (18.8%) >.05

Ethnicity
Hispanic or Latino 28 (1.9%) 21 (1.4%) >.05 41 (3.4%) 33 (2.8%) >.05
Not Hispanic or Latino 1371 (94.1%) 1367 (93.9%) >.05 976 (82.1%) 966 (81.2%) >.05
Other or unknown 58 (4.0%) 69 (4.7%) >.05 172 (14.5%) 190 (16.0%) >.05

a Characteristics of the triaged cohorts for both datasets using different triaging models.
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the treatment prevents the downstream outcome directly, our 
work also applies if the treatment is allocated proactively (ie, 
before the intermediate outcome) (see Supplementary Mate
rial S5). For example, in the context of COVID-19, incorpo
rating the effect of acquiring the virus on mortality when 
determining the proactive allocation of Paxlovid47 helped to 
reduce the time between a positive COVID-19 test result and 
treatment, increasing the effectiveness of the drug.

We note limitations in our study. First, causal inference 
techniques rely on untestable assumptions. Violating these 
assumptions may result in biased effect estimates. Moreover, 
due to the lack of ground-truth effects, we are unable to vali
date the learned effects of sepsis on mortality risk. To over
come this in part, in line with past work, we confirmed that 
our key takeaways held across a multitude of different causal 
inference techniques.39,41 Second, we assumed a particular 
causal model of the world (Figure 1). We stress that this 
model of the world is an oversimplification of the truly com
plex nature of sepsis and most diseases. However, we empha
size that this work is not meant to guide clinical practice in its 
current state, but rather, is a proof-of-concept study to dem
onstrate the importance of incorporating downstream patient 
outcomes into patient stratification tools. Moreover, when 
estimating the effect of sepsis on mortality, we are estimating 
the total effect of sepsis on mortality. This includes mediator 
variables that are treatments and represent the standard of 
care during the hospitalization, including antibiotics for 
patients who developed sepsis. However, in this study, as we 
assume that individuals with similar characteristics are given 
similar levels of treatment, heterogeneity due to treatments 
present in the data should not confound results. Additionally, 
for pragmatic reasons, we used different definitions of sepsis 
in each dataset. Despite this, our results are consistent across 
datasets. Finally, in our main analysis, we focused on ICU 
encounters due to limitations of the BIDMC dataset. 
Although ICU encounters are associated with greater mortal
ity, the trends hold across a broader cohort of inpatient 
encounters at U-M (see Supplementary Material S6.3) .

Overall, this study has significant implications for using 
predictive models to guide the allocation of attention and 
interventions. Our goal is to raise awareness and frame 
research on patient risk stratification across health-care disci
plines rather than to provide specific guidance to clinical 
practice. In practice, the optimal way to stratify patients will 
depend on the model’s use case itself. For example, a model 
that is intended to be used for hypothesis generation about 
the underlying disease process is likely to be effective when 
stratifying on risk of disease only. In our study, we examined 
a different case where the model’s predictions are being used 
to guide resource allocation. We highlighed how the model’s 
predictions (ie, risk of sepsis) did not directly align with the 
overall task (ie, resource allocation to reduce mortality). 
More generally, a model may have more than 1 use case, so 
one could potentially perform patient stratification in differ
ent ways during evaluation to provide a more comprehensive 
analysis that aligns with different clinical needs.48 Nonethe
less, our findings highlight the important limitations of exist
ing methods that ignore the potentially heterogeneous effects 
that the acquisition of a condition may have on downstream 
patient outcomes. All agree the goal is to optimize patient 
outcomes. However, targeting interventions by risk of condi
tion alone will miss individuals who are at lower risk but 

more likely to experience poor outcomes, should the condi
tion be acquired.
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