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Abstract

We investigate the value of extending the
completeness of a decision model along dif-
ferent dimensions of re�nement. Speci�cally,
we analyze the expected value of quantita-
tive, conceptual, and structural re�nement of
decision models. We illustrate the key dimen-
sions of re�nement with examples. The anal-
yses of value of model re�nement can be used
to focus the attention of an analyst or an au-
tomated reasoning system on extensions of a
decision model associated with the greatest
expected value.

1 Introduction

The quality of recommendations for action generated
by decision analyses hinges on the �delity of deci-
sion models. Indeed, the task of framing a decision
problem|enumerating feasible actions, outcomes, un-
certainties, and preferences|lies at the heart of deci-
sion analysis. Decision models that are too small or
coarse may be blind to details that may have signif-
icant e�ects on a decision recommendation. Unfor-
tunately, the re�nement of decision models can take
a great amount of time, and can be quite costly in
time and expense. In some cases, actions are taken
well before a natural stopping point is reached in the
modeling process. In other cases, important distinc-
tions about actions and outcomes are recognized days
or months after a model is developed.

We have developed methods for probing the value of
key dimensions of decision-model re�nement. We pose
the techniques as tools that can direct the attention of
an analyst or of an automated reasoning system to re-
�ne aspects of a decision model along dimensions that
have the highest expected payo�. The methods also
can provide guidance on when it is best to cease addi-
tional re�nement and to take immediate action in the
world. Our work di�ers from previous studies of the
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value of modeling (Watson & Brown, 1978; Nickerson
& Boyd, 1980) in that we develop a unifying framework
for probing the values of di�erent classes of re�nement,
and consider issues surrounding the direction of model
building and improvement under resource constraints.

Three fundamental dimensions of decision-model re-
�nement are (1) quantitative re�nement, (2) concep-
tual re�nement, and (3) structural re�nement. We will
explore methods for making decisions about which di-
mensions to re�ne, and the amount of e�ort to expend
on each form of re�nement.

Quantitative re�nement is the allocation of e�ort to re-
�ne the uncertainties and utilities in a decision model.
There are two classes of quantitative re�nement: (1)
uncertainty re�nement, and (2) preference re�nement.
Uncertainty re�nement is e�ort to increase the accu-
racy of probabilities in a decision model. For example,
assessment may be focused on the tightening of bounds
or second-order probabilities over probabilities in a de-
cision model. Preference re�nement is re�nement of
numerical values representing the utilities associated
with di�erent outcomes. For example, an analyst may
work to re�ne his uncertainty about the value that a
decision maker will associate with an outcome that has
not been experienced by his client.

Conceptual re�nement is the re�nement of the seman-
tic content of one or more distinctions in a decision
model. With conceptual re�nement, we seek to modify
the precision or detail with which actions, outcomes,
and related random variables are de�ned. For exam-
ple, for a decision maker deliberating about whether
to locate a party inside his home versus outside on
the patio, it may be important to extend the distinc-
tion \rain" to capture qualitatively di�erent types of
precipitation, using such conceptually distinct notions
as \drizzle," \intermittent showers," and \downpour."
Likewise, with additional deliberation, he may real-
ize that there are additional options available to him.
Many of these additional alternatives are those that
would not be taken if there were no uncertainty about
the weather. For example, he might consider having
the party on the porch, or renting a tent to shelter the
guests in his yard.



Structural re�nement is modeling e�ort that leads
to the addition or deletion of conditioning variables
or dependencies in a decision model. For exam-
ple, a decision maker may discover that an expensive
telephone-based weather service gives extremely accu-
rate weather forecasts, and wish to include the results
of a query to the service in his decision analysis.

These classes of re�nement represent distinct dimen-
sions of e�ort to enhance a decision model. In the next
sections, we will develop equations that describe the
expected value of continuing to re�ne a model for each
dimension of re�nement.

2 Expected Values of Decision-Model

Re�nement

Let us now formalize measures of the expected value
of re�nement (EVR)1. For any dimension of EVR, we
seek to characterize our current state of uncertainty
about the outcome of an expenditure of e�ort to re-
�ne a decision model. Experienced decision analysts
often have strong intuitions about the expected bene-
�ts of re�ning a decision model in di�erent ways. This
knowledge is based on expertise, and is conditioned
on key observables about the history and state of the
modeling process. Assume that we assess and repre-
sent such knowledge in terms of probability distribu-
tions over the value of the best decision available fol-
lowing model re�nement, conditioned on key modeling
contexts.

To compute the EVR, we �rst determine the expected
value associated with the set of possible models we cre-
ate after re�nement. We sum together the expected
utility of the best decision recommended by each pos-
sible revised model, weighted by the likelihood of each
model. Finally, we subtract this revised expected value
from the expected value of the decision recommended
by the unre�ned model.

2.1 General Analysis

Action

World State

Value

Figure 1: A basic decision model

Consider the simple decision problem with a single
state variable X and a single decision variable A, as
shown in Figure 1. In the party problem,X represents

1We shall use the EVR to refer generally to the expected
value of re�nement, but shall use more speci�c terms to
refer to alternate classes of re�nement.

the weather and A represents the decision on party lo-
cation. The expected value of taking action ak, given
background information �, is

E[vjak; �] =
X
i

p(xij�)v(ak; xi): (1)

The expected value of the decision o�ered by this de-
cision model is

E[vj�] = max
k

X
i

p(xij�)v(ak; xi): (2)

Suppose the decision model can be re�ned via one of
several re�nement procedures R. In general, R can
be parameterized by amount of e�ort (e.g., as char-
acterized by time) expended on the re�nement. We
shall simplify our presentation by initially overlooking
such a parameterization. Note that � represents the
state prior to any re�nement consideration; R repre-
sents information about the re�nement prior to actual
re�nement. Let R(�) denote the state of information
after a re�nement requiring some prespeci�ed e�ort.
Let �k denote the expected utility that will be ob-
tained for action ak. Before the re�nement is carried
out, the values of �k are unknown. However, we can
assess a probability distribution over each of the val-
ues, given information about R and �. We denote this
distribution as p(�kjR; �). The expected utility given
re�nement R is

E[vjR(�)] =

Z
�1����m

p(�1; : : : ; �mjR; �)[max
k

�k]: (3)

If we cease model-re�nement activity, we commit
to an action in the world based on all information
available|including p(�kjR; �). The expected utility
without re�nement is

E[vjR; �] = max
k

Z
�k

�k p(�kjR; �): (4)

The EVR is

EVR(R) = E[vjR(�)]� E[vjR; �]: (5)

In practice, the values �k and distributions p(�kjR; �)
are dependent on the speci�c type of re�nement and
the amount of e�ort allocated. We shall now describe
speci�c properties of the three types of model re�ne-
ment and give examples of the detailed analysis of
computing the EVR for each. In each case, we shall
show how each of the analyses is related to the general
formulation captured in Equation (5).

2.2 Expected Value of Quantitative
Re�nement

We start with a consideration of the value of e�orts to
re�ne quantitative measures of likelihoods and prefer-
ences.



2.2.1 Uncertainty Re�nement

Consider the quantitative re�nement on the state vari-
able X of the party-location problem. What is the
value of \extending the conversation" through expend-
ing e�ort to re�ne the probability distribution p(Xj�)
with additional assessment. Let us �rst consider the
general case where the distribution p(Xj�) is continu-
ous. Assume that a continuous distribution is char-
acterized or approximated by a named distribution
and a parameter or a vector of parameters. Speci�-
cally, assume a functional form f for the probability
density function, such that for every reasonable dis-
tribution p(Xj�), there exists a parameter or a set
of parameters �, so that the the numerical approxi-
mation p(Xj�) � f�(X) is within satisfactory limits.
Before the assessment is carried out, we cannot be cer-
tain about the outcome distribution; however, its out-
come might be described by a distribution of the form
p(�jR; �), which represents the decision maker's un-
certainty about the primary distribution parameter �.
The expected value of the re�nement is

E[vjR(�)] =

Z
�

p(�jR; �)[max
k

Z
x

f�(x)v(ak; x)] (6)

The expected value without performing the quantita-
tive re�nement but taking account of knowledge an
agent has about the potential outcome of re�nement
procedure R is

E[vjR; �] = max
k

Z
x

Z
�

f�(x)p(�jR; �)v(ak; x)

= max
k

Z
x

p̂(xjR; �)v(ak; x) (7)

where

p̂(XjR; �) =

Z
�

f�(x)p(�jR; �)

is the operative distribution for the authentic distribu-
tion p(Xj�) (Tani, 1978; Logan, 1985).

The operative distribution is the distribution which
the decision maker should use if no further assess-
ment is performed. Let �̂ be the parameter that
best approximates the operative distribution p̂(Xj�),
i.e., the numerical approximation p̂(Xj�) � f

�̂
(X)

is within satisfactory limits. This is di�erent from
�� =

R
�
� p(�jR; �) which denotes the mean of the sec-

ondary distribution.

The expected value of quantitative re�nement on the
uncertainty onX with respect to assessment procedure

R, denoted EVRQU (R) is the di�erence between (6)
and (7).

Let us consider the case where the state variable X
is discrete with two states fx1; x2g. We are interested
in the value of improving the probabilities assessed for
p(x1j�) and p(x2j�). We denote the assessed values
of p(x1j�) and p(x2j�) by � and 1 � �, respectively.
The parameter which describes the primary distribu-
tion over X is � = �, and we have f�(x1) = � and

f�(x2) = 1 � �. Hence f is linear in � and therefore
�̂ = ��. The expected value given that quantitative
re�nement is performed is, E[vjR(�)]

=

Z
�

p(�jR; �)max
k

[�v(ak; x1)+(1��)v(ak; x2)]: (8)

The expected value without the re�nement but with
knowledge about the potential performance of R is

E[vjR; �] = max
k

[��v(ak; x1) + (1� ��)v(ak; x2)] : (9)

The above analysis can be extended to the general case
where the state variable X has n possible states. In
this case, � consists of n�1 parameters (�1; : : : ; �n�1).

Our analysis of EVRQU (R) can be related to the gen-
eral formulation in Equation (5) by de�ning the vari-
able

�k = �v(ak ; x1) + (1� �)v(ak; x2) (10)

for each action ak 2 A. The distributions p(�kjR; �)
can be derived from p(�jR; �).

We shall illustrate the concept of quantitative re�ne-
ment with a example drawn from the party problem.
Consider the problem of selecting a location for the
party given uncertainty about the weather. Let the al-
ternatives for the location be \Outdoor" (a1) and \In-
door" (a2), and let the weather conditions be \Rain"
(x1) or \Sunny" (a2). Let � denote the probability
that it will rain. The utility values are,

Rain (�) Sunny (1� �)
Outdoor 0.00 1.00
Indoor 0.67 0.57

The optimal locations as a function of � are

a�(�) =

�
Outdoor if � � 0:38
Indoor if � > 0:38

π

.57

.67

0 .38 1.0

Outdoor
Indoor

U
til

ity

1

Figure 2: The optimal party location as a function of
the probability of rain (�)

Let us suppose that the current uncertainty about �
can be described by a probability distribution whose
mean is 0.4. In this case, the optimal decision, without
further assessment, is to hold the party indoors, with
an expected utility of 0.61. However, a more accurate
assessment of the value of � might change the optimal



decision resulting in a potentially higher utility. With
re�nement,

E[vjR(�)] =

Z
�

p(�jR; �)�(a�(�); �)

where

�(a�(�); �) =

�
1� � if � � 0:38
0:57 + 0:1� if � > 0:38

Consider the case where � is uniformly distributed be-
tween the interval [0.3,0.5]. The expected value of re-

�nement, EVRQU (R), is then,

=

Z :38

:30

5(1� �)d� +

Z :50

:38

5(0:57 + 0:1�)d�� 0:61

= 5[� � 0:5�2]:38:3 + 5[0:57�+ 0:05�2]:5:38 � 0:61

= 0:6324� 0:610 = 0:0224

Notice that the above analysis was performed in the �-
domain. An alternative analysis and perspective which
will produce equivalent results can be performed in the
�-domains. This is done by a change of variables from
� to �1 and �2 via Equation (10). The resulting anal-
ysis would have to be displayed as a two-dimensional
graph.

2.2.2 Preference Re�nement

Let us now consider the expected value of quantitative

re�nement of preference EVRQP (R). We seek to im-
prove the values of v(ak; xi) for each k and i. Let �ki
denote the value that will be assessed, given that the
re�nement is carried out. Let p(�kijR; �) denote the
uncertainty over the assessment for each v(ak; xi). The
expected value, given that the quantitative re�nement
on preference is carried out, is E[vjR(�)]

=

Z
�11����mn

p(�11; : : : ; �mnjR; �)[max
k

X
i

p(xij�)�ki]:

(11)
The expected value without quantitative re�nement on
preference but with knowledge about the performance
of R is

E[vjR; �] = max
k

X
i

p(xij�)��ki (12)

where

��ki =

Z
�ki

�ki p(�kij�)

is the operative utility value for v(ak; aki). The

EVRQP (R) is the di�erence between (11) and (12).
This analysis can be related to the general formula-
tion in Equation (5) by de�ning the variable

�k =
X
i

p(xij�)�ki (13)

for each action ak 2 A. The distributions p(�kjR; �)
can be derived from the distributions p(�kijR; �).

Let us again use the party problem to illustrate the
value of re�ning preferences. Since we can �x the util-
ity for the worst outcome (outdoor and rain) at zero,
and the utility for the best outcome (outdoors and
sunny) at one, we need only to consider the uncer-
tainty over further assessment of the values �21 (in-
door and rain), and �22 (indoor and sunny). Let the
uncertainty over these values be:

�21 = U [0:62; 0:72]

�22 = U [0:52; 0:62]

The operative values for the preference values are,

Rain (.4) Sunny (.6) eu
Outdoor 0.00 1.00 0.60
Indoor 0.67 0.57 0.61

The default choice without any further assessment is
to hold the party indoors with an expected utility of
0.61.

�1 = 0:60

�2 = 0:4�21+ 0:6�22

In the example, there is no uncertainty over �1. The
utility, �2, displayed in Figure 3, is a linear sum of
two uniformly distributed variables, with a triangular
distribution p(�2jR; �),

=

(
400(�2 � :56) if :56 � �2 � :61
20� 400(�2 � :61) if :61 � �2 � :66
0 otherwise

and an expected value of 0.61.

.61.56
0
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Figure 3: The pdf for �2

Figure (4) shows the optimal value �� = maxk �k
as function of �2, where �1 is �xed at 0.60. The

EVRQP (R) is

=

Z :60

:56

400(�2 � 0:56)(0:6)d�2+Z :61

:60

[20� 400(�2 � 0:61)](0:6)d�2+Z :66

:61

[20� 400(�2 � 0:61)]�2d�2 � 0:61

= 0:63733� 0:610 = 0:02733

2.3 Expected Value of Conceptual
Re�nement

We shall now explore measures of the value of con-
ceptual re�nement: (1) the value of re�nement of the



.56 .60 .66

.66

.60

2µ

µ∗

Figure 4: The optimal value �� as a function of �2

de�nitions of state variables, EVRCS(R) and (2) the

re�nement of de�nitions of actions, EVRCA(R).

2.3.1 State-Variable Re�nement

Assume that our current decision model has a state
variable X = fx1; x2g and decisions A = fa1; a2g.
Now, let us consider the value of re�ning the state
x1 into x11 and x12, such that the resulting state vari-
able is X0 = fx11; x12; x2g. We further assume that
the probability of the re�ned states p(x11jx1; �) and
p(x12jx1; �) are known. As a result of the re�nement,
we need to assess the utilities v(ak; x1j) for k = 1; 2
and j = 1; 2. Before these assessments are carried out,
the values v(ak; x1j) are unknown. Let �kj represent
the utilities v(ak ; x1j) that will be assessed if the as-
sessment is performed. In addition, we assume that
the decision maker is able to assess a set of probability
distributions p(�kjjR; �), k = 1; 2 and j = 1; 2 over
these utilities.

To assess the probabilities over the utilities, a possi-
ble conversation between the analyst and the decision
maker might be as follows:

In our previous conversation, you assigned a
utility u for outcomes at your point of in-
di�erence between an outcome and a lottery
with probability u for the best prospect and
probability 1�u for the worst prospect. Sup-
pose I were to ask you to assess the utility of
each of the re�ned outcomes. As we do not
have an unlimited amount of time to assess
these utilities, please give us an estimate now
of the probabilities describing the utility val-
ues assessed if you were to have enough time
to thoroughly reect on your preferences and
knowledge about the outcomes.2

The expected value resulting from the conceptual re-
�nement of X to X0 is E[vjR(�)]

=

Z
�11�12�21�22

p(�11; �12; �21; �22jR; �)

max
k=1;2

[p(x11j�)�k1+ p(x12j�)�k2 + (14)

p(x2j�)v(ak; x2)] :

2We could also perform this assessment in terms of
the utilities that would be assessed after some prede�ned
amount of time for reection.

The expected value given that the re�nement is not
carried out, but with knowledge about the perfor-
mance of R is E[vjR; �]

= max
k=1;2

[p(x11j�)��k1 + p(x12j�)��k2 +

p(x2j�)v(ak; x2)] (15)

where ��kj =
R
�kj

�kj p(�kjj�), (k = 1; 2 and j = 1; 2)

is the operative value to be used when no re�nement is

carried out. The EVRCS(R) for re�ning state variable
X to X0 is just the di�erence between (14) and (15).
As before, we can simplify this analysis and relate it
to the general formulation of Equation (5) by de�ning
the variable �k

= p(x11j�)�k1+ p(x12j�)�k2+ p(x2j�)v(ak; x2); (16)

for action ak; k = 1; 2 and deriving the distributions
p(�kjR; �) from the distributions p(�kjjR; �).

To illustrate conceptual re�nement, consider the ex-
pansion of the state of \Rain" into \Downpour" and
\Drizzle". Assume that a decision maker's assessment
of his uncertainty over the values of �12 (outdoor and
drizzle), �21 (indoor and downpour), and �22 (indoor
and drizzle) are as follows:

p(�12jR; �) = U [0:05; 0:15]

p(�21jR; �) = U [0:67; 0:77]

p(�22jR; �) = U [0:57; 0:67]

The operative utilities are as follows:

Rain (.4)
Down- Drizzle Sunny EV
pour (.2) (.2) (.6)

Outdoor 0.00 0.10 1.00 0.62
Indoor 0.72 0.62 0.57 0.61

Without re�nement, the expected utility of holding
the party outdoors is 0.62 and the utility of having
the party indoors is 0.61. Since the two expected val-
ues are very close, further re�nement might lead to
a better discrimination between the two choices. In
lieu of additional re�nement, the default decision is to
have the party outdoors. Based on the distributions
over �ki, we de�ne

�1 = 0:2�12+ 0:6

�2 = 0:2�21+ 0:2�22+ 0:342

where �1 is uniformly distributed between 0.61 and
0.63, i.e. p(�1jR; �) = U [0:61; 0:63], while �2 has a
triangular distribution p(�2jR; �) (depicted in Figure
5),

=

(
2500(�2 � :59) if :59 � �2 � :61
50� 2500(�2 � :61) if :61 � �2 � :63
0 otherwise.

Figure (6) shows the region over possible values of �1
and �2. The EVR

CS(R) is

=

Z :63

:61

50

�Z :61

:59

2500(�2 � 0:59)�1d�2+
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Figure 5: The pdf for �2

Z �1

:61

[50� 2500(�2 � 0:61)]�1d�2 +Z :63

�1

[50� 2500(�2 � 0:61)]�2d�2

�
d�1

�0:620 = 0:9208� 0:620 = 0:3008

.61

.59

.63.61

= 2µµ∗

µ∗ =µ1

.63

µ2

µ1

Figure 6: The region of values for �1 and �2 where
�� = maxk �k

2.3.2 Action Re�nement

Similar to extending the conversation about the def-
inition of states, the set of decision alternatives may
be increased with continuing modeling e�ort. Con-
sider the conceptual re�nement of action A = fa1; a2g
by the addition of action a3. Let A0 = fa1; a2; a3g.
Unlike state variable re�nement, the set of re�ned ac-
tions need not be mutually exclusive. Indeed, they
need not even be mutually exhaustive as some alterna-
tives can be ruled out immediately, based on common
sense knowledge or dominance relationships (Wellman,
1988). As the result of action re�nement we need to
assess the utilities v(a3; xi) for all xi 2 X. Let �i de-
notes the utility v(a3; xi) for each i, and let p(�ijR; �)
be the uncertainty over each assessment. The expected
value o�ered by the re�ned model is E[vjR(�)]

=

Z
�1����n

p(�1; : : : ; �njR; �)[ max
k=1;2;3

X
i

p(xij�)uki]

(17)
where

uki =

�
v(ak; xi) if k = 1; 2
�i if k = 3:

The expected value without the conceptual re�nement
on action is,

E[vjR; �] = max
k=1;2;3

X
i

p(xij�)�uki (18)

where

�uki =

�
uki = v(ak; xi) if k = 1; 2
��i if k = 3:

The EVRCA(R) for re�ning action A to A0 is then the
di�erence between (17) and (18). We can relate these
results to the general formulation of Equation (5) by
de�ning the variable

�k =
X
i

p(xij�)uki (19)

for each action ak. Note that �1 and �2 are determin-
istic, while the probability distribution p(�3jR; �) can
be derived from the distributions p(�ijR; �).

Let us consider the re�nement of the example prob-
lem with the addition of a third action which|to hold
the party on the porch (a3). To complete the re�ne-
ment, we must assess the utility values �1 (porch and
downpour), �2 (porch and drizzle), and �3 (porch and
sunny). For simplicity, we will assume that the deci-
sion maker is certain about the value of �3, which is
0.81. His uncertainty over �1 and �2 are

�1 = U [0:17; 0:27]

�2 = U [0:37; 0:47]

The operative utilities are as follows:

Rain (.4)
Down- Drizzle Sunny EV
pour (.2) (.2) (.6)

Outdoor 0 .10 1 .620
Indoor .72 .62 .57 .610
Porch .22 .42 .81 .614

The optimal action without further re�nement is to
hold the party outdoors, with an expected utility of
0.62.

�1 = 0:62

�2 = 0:61

�3 = 0:2�1+ 0:2�2+ 0:6�3

There is no uncertainty on �1 and �2. However, as dis-
played in Figure 7, �3 is a linear sum of two uniformly
distributed variable and has a triangular distribution
of the form, p(�3jR; �),

=

(
400(�3 � :564) if :564 � �3 � :614
20� 400(�3 � :614) if :614 � �2 � :664
0 otherwise

and has an expected value of 0.614.
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Figure 7: The pdf for �2

Figure (8) shows the optimal value �� = maxk �k as
a function of �3. The expected value of conceptual
re�nement via addition of the third alternative is

=

Z :614

:564

400(�3 � 0:564)(0:62)d�3+Z :620

:614

[20� 400(�3 � 0:614)](0:62)d�3+Z :664

:620

[20� 400(�3 � 0:614)]�3d�3 � 0:62

= 0:62568� 0:62 = 0:00568

∗µ
.620

.564 .620
3µ .664

µ∗ =µ1

µ 3=µ∗
.664

Figure 8: The optimal value �� as a function of �3

2.4 Expected Value of Structural Re�nement

Value

X

A Value

Y X

A

Figure 9: Structural re�nement on node X

Finally, we consider the value of structural re�ne-

ment, EVRS(R), the value of increasing the number
of conditioning variables. Figure 9 depicts an exten-
sion of conversation based on structural re�nement
of the state variable X of our simple decision prob-
lem by the addition of Y as a conditioning event for
X. For example, in the party problem, we may iden-
tify \wind speed" as a conditioning variable on the
forthcoming weather. We are interested in analyzing
the additional value that is gained by the addition
of Y as a conditioning variable for X. This struc-
tural re�nement requires the assessment of the prob-
ability distributions p(Y jR(�)) and p(XjY;R(�)). As
before, we assume a functional form f where, for ev-
ery reasonable distribution for p(Y jR(�)), there exists

a parameter �Y , such that the numerical approxima-
tion p(Y jR(�)) � f�Y (Y ) is within satisfactory limits.
We let �XjY represent the parameter for the distri-

bution p(XjY;R(�)). Let the distributions p(�Y jR; �)
and p(�Y jX jR; �) represent the decision maker's un-
certainty about the parameters �Y and �XjY , respec-
tively. The expected value that results from the struc-
tural re�nement via the addition of Y as a conditioning
variable for X, is E[vjR(�)

=

Z
�Y

p(�Y jR; �)

Z
�Y jX

p(�Y jX jR; �)�
max
k

Z
y

f�Y (y)

Z
x

f�XjY
(x)v(ak; x)

�
: (20)

The expected value without structural re�nement is

E[vjR; �] = max
k

Z
y

f
�̂Y
(y)

Z
x

f
�̂XjY

(x)v(ak ; x); (21)

where �̂Y and �̂XjY are the parameters for the opera-
tive distributions

p̂(Y jR; �) =

Z
�Y

f�Y (Y )p(�Y jR; �) � f
�̂Y
(Y )

and

p̂(XjY;R; �) =

Z
�XjY

f�Y (X)p(�XjY jR; �) � f�̂XjY
(X)

respectively. The EV RS(R) for the variable X, with
respect to adding a new conditioning event Y , is just
the di�erence between (20) and (21). The case where
X and Y are discrete variables is treated in (Poh &
Horvitz, 1992).

A special form of structural re�nement is the famil-
iar expected value of information (EV I). Within the
inuence diagram representation, we can view the ob-
servation of evidence as the addition of arcs between
chance nodes and decisions. We describe the relation-
ship of EVI and other dimensions of model re�nement
in (Poh & Horvitz, 1992).

3 Control of Re�nement

Measures of EVR, computed from a knowledge base of
probabilistic expertise about the progress of model re-
�nement, hold promise for providing guidance in con-
trolling decision modeling in consultation settings, as
well as within automated decision systems. In this sec-
tion, consider control techniques for making decisions
about the re�nement of decision models.

3.1 Net Expected Value of Re�nement

So far, we have considered only the value of alternative
forms of e�ort to expending e�ort to re�ne a model.
To consider the use of EVR measures, we must balance
the expected bene�ts of model re�nement with (1) the
cost of the assessment e�ort, and (2) the increased



computational cost of solving more re�ned, and po-
tentially more complex, decision models. We de�ne
the the net expected value of re�nement, NEVR, as
the di�erence between the EVR and the cost of mak-
ing a re�nement and increase in the cost of solving the
re�ned model. That is NEVR(R; t)

= EVR[(R(t)); �]�Ca(ta) �Cc(�(tc)) (22)

where R(t) is a re�nement parameterized by the time
expended on a particular re�nement procedure, Ca is a
function converting assessment time, ta to cost, and Cc
is a function converting changes in the expected com-
putational time, required to solve the decision prob-
lem, �(tc), to cost. In o�ine, consultation settings,
we can typically assume that changes in computational
costs, associated with the solving decision models of in-
creasingly complexity, are insigni�cant compared with
the costs of assessment. We can introduce uncertainty
into the costs functions with ease.

3.2 Decisions about Alternative Re�nements

Let us assume that we wish to identify the best re�ne-
ment procedure to extend a decision model. For now,
let us assume that we have deterministic knowledge
about the cost of re�nements. We shall assume that
the cost is a deterministic function of time3 and that
computational changes with re�nement are insigni�-
cant.

We can control model building with a strategic op-
timization (Horvitz, 1990) that seeks to identify the
best re�nement procedure and the amount of e�ort to
allocate to that procedure, i.e.,

argmax
R;t

EVR[(R(t)); �]� C(t) (23)

Given appropriate knowledge about decision model re-
�nement, we solve such a maximization problem by
computing the ideal amount of e�ort to expend for
each available re�nement methodology, choose the pro-
cedure R� with the greatest NEVR, and apply it for
the ideal amount of time, t� computed from the max-
imization. We halt re�nement when all procedures
have NEVR(R; t) < 0 for all times t.

However, we need not be limited to considering single
procedures. In a more general analysis, we allow for
the interleaving of arbitrary sequences of re�nement
procedures, where each re�nement procedure can be
allocated an arbitrary amount of e�ort, and to con-
sider sequences of re�nements with the greatest ex-
pected value. As any re�nement changes a model, and,
thus, changes the value of re�nement for future model-
ing e�orts, the identi�cation of a theoretically optimal
sequence requires a combinatorial search through all
possibilities. Let us consider several approximations
to such an exhaustive search.

3In practice, a decision consultant may wish to consider
such multiattribute cost models as the cost in time, dollars,
and frustration associated with pursuit of di�erent kinds
of assessments and re�nements.

A practical approach to dodging the combinatorial
control problem is to consider prede�ned quantities of
e�ort, and to employ a myopic or greedy EVR control
procedure. With a greedy assumption, we simplify our
analysis of control strategies by making the typically
invalid assumption that we will halt modeling, solve
the decision model, and take an action following a sin-
gle expenditure of modeling e�ort. We can further sim-
plify such a myopic analysis by assuming a prede�ned,
constant amount of e�ort to employ in NEVR anal-
yses. We compute the EVR(R(T )) for all available
re�nement procedures R, where T is some constant
amount of time, or a quantity of time TR = T (R), a
constant amount of time keyed to speci�c procedures.
At each cycle, we compute the NEVR for all proce-
dures, and implement the re�nement procedure with
the greatest NEVR. We iteratively repeat this greedy
analysis until the cost of all procedures is greater than
the bene�t, at which time we solve the decision prob-
lem and take the recommended action. Figure (10)
shows a fragment of the graph of possible model re-
�nement steps.

structural conceptual

quantitative

quantitative quantitative

quantitative

structural

Figure 10: Greedy control of model re�nement with
iterative application of NEVR analyses

We can relax the myopia of the greedy analysis by al-
lowing varying amounts of lookahead. For example,
we can consider the NEVR of two re�nement steps.
Such lookahead can be invoked when single steps yield
a negative NEVR for all re�nement methods. We can
also make use of theoretical dominance results. For ex-
ample, we have shown in a more comprehensive paper
that the expected value of perfect information (EVPI)
is the upper bound on the value of any structural re-
�nement (Poh & Horvitz, 1992).

4 Discussion and Related Work

The value of the EVR methods hinges on the avail-
ability of probability distributions that describe the



outcomes of extending models in di�erent ways. We
suspect that expert analysts rely on such probabilis-
tic modelingmetaknowledge, and that relatively stable
probability distributions can be assessed for prototyp-
ical contexts and states of model completeness. We do
not necessarily have to rely on assessing an expert deci-
sion analyst's probability distributions about alterna-
tive outcomes of modeling. In an automated decision
support setting, we can collect statistics about model-
ing and modeling outcomes. Such data collection can
be especially useful for the application of EVR-based
control strategies to automated reasoning systems that
construct models dynamically (Breese, 1987; Goldman
& Breese, 1992).

We are not the �rst to explore the value of modeling
in decision analysis. The value of modeling was �rst
addressed by Watson and Brown (1978) and Nickerson
and Boyd (1980). The notion of reasoning about the
value of probability assessment with an explicit consid-
eration of how second-order distributions change with
assessment e�ort has been explored rigously by Lo-
gan (1985). Chang and Fung (1990) have considered
the problem of dynamically re�ning and coarsening of
state variables in Bayesian networks. They speci�ed
a set of constraints that must be satis�ed to ensure
that the coarsening and weakening operations do not
a�ect variables that are not involved. In particular,
the joint distribution of the Markov blanket excluding
the state variable itself must be preserved. However,
the value and cost of performing such operations were
not addressed. The form of re�nement that we re-
fer to as structural re�nement has also been examined
by Heckerman and Jimison (1987) in their work on
attention focusing in knowledge acquisition. Finally,
related work on control of reasoning and rational deci-
sion making under resource constraints, using analyses
of the expected value of computation and considering
decisions about the use of alternative strategies and al-
locations of e�ort, has been explored by Horvitz (1987,
1990) and Russell and Wefald (1989).

5 Summary and Conclusions

We introduced and distinguished the expected value of
quantitative, conceptual, and structural re�nement of
decision models. We believe that the analyses of the
value of model re�nement hold promise for controlling
the attention of decisions makers, and of automated
reasoning systems, on the best means of extending a
decision model. Such methods can also be employed
to determine when it is best to halt re�nement proce-
dures and instead to solve a decision model to identify
a best action. We look forward to assessing expert
knowledge about the value of decision-model re�ne-
ment and testing these ideas in real decision analyses.
We are striving to automate the assessment of knowl-
edge about model re�nement, as well as the iterative
cycle of EVR computation. We are implementing key
ideas described in this paper within the IDEAL inu-

ence diagram environment (Srinivas & Breese, 1990).
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