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ABSTRACT 

We investigate opportunistic routing, centering on the 

recommendation of ideal diversions on trips to a primary 

destination when an unplanned waypoint, such as a rest stop 

or a refueling station, is desired.  In the general case, an 

automated routing assistant may not know the driver’s final 

destination and may need to consider probabilities over 

destinations in identifying the ideal waypoint along with the 

revised route that includes the waypoint. We consider 

general principles of opportunistic routing and present the 

results of several studies with a corpus of real-world trips. 

Then, we describe how we can compute the expected value 

of asking a user about the primary destination so as to 

remove uncertainty about the goal and show how this 

measure can guide an automated system’s engagements 

with users when making recommendations for navigation 

and analogous settings in ubiquitous computing. 
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ACM Classification Keywords 
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INTRODUCTION 

We explore the challenge of providing drivers of cars with 

efficient diversions to waypoints that may address an acute 

or standing interest or need on the way to a primary 

destination. As examples, a driver may issue a voice search 

in pursuit of an entity or service, such as a rest stop or a 

refueling or recharging station while driving to a target 

destination. Alternatively, an automated recommender 

system, embedded in an onboard device or communicating 

through a cloud service, might know or speculate about a 

driver’s or passenger’s rising needs or background interests, 

understand about a user’s time availability, and recognize 

when opportunities for modifying a trip in progress might 

be desired. The system could then alert the driver about the 

possibilities, and share information about the ideal routing 

and time required for the divergence. We investigate such 

opportunistic routing. We extend prior work on 

opportunistic routing by considering methods for selecting 

among candidate unplanned waypoints and formulating 

efficient revised routes given uncertainty about the primary 

destination.  In the general case, an automated routing 

assistant may not know a final destination and may need to 

consider the uncertainty in the destination of the driver in 

identifying the best waypoint and revised route to the 

primary destination. In fact, drivers specify their destination 

to their vehicle’s navigation system for only about 1% of 

their trips, making uncertainty almost inevitable [1]. We 

shall first consider principles of opportunistic routing under 
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Figure 1: Candidate destinations are at road intersections 

(light dots). Trips are represented as a sequence of 

intersections (black dots). 

 



 

uncertainty.  Then we introduce methods for computing the 

expected value of gaining additional information about the 

primary destination.  We discuss how this computation can 

be harnessed to guide decisions about the value of asking 

drivers to resolve a system’s uncertainty about the ultimate 

destinations—versus providing recommendations on 

waypoint candidates in an autonomous manner. 

RELATED WORK 

The problem of mobile opportunistic routing was 

introduced by Horvitz, Koch, and Subramani in [2].  The 

work presents methods for opportunistic routing and 

describes a prototype named Mobile Commodities. The 

system receives queries or automatically identifies needs 

for accessing goods or services during a trip to primary 

destination.  Standing goals, such as “search for a gas 

station when fuel tank is less than 10 percent full,” can be 

encoded in the system.  The prototype continues to perform 

cost-benefit analyses as it speculates about potentially 

valuable waypoints and the time associated with investing 

time in a diversion. While the project mentions the 

challenge of handling uncertainty in destinations, the effort 

focuses largely on cases where a known destination is input 

to the system, and considers detailed modeling of the 

uncertainty in the availability of a driver and the cost of 

taking additional time to divert to and engage in an 

opportunistic task, using Bayesian user models of the 

context-sensitive cost of time (drawing upon information 

from an online calendar and traffic).  Inferences about the 

cost of elapsed time are used in considerations of 

introducing new waypoints or finding ideal solutions to 

needs such as refueling a car based on a consideration of 

the pricing and distance of fueling stations. Later related 

work by Kamar, Horvitz, and Meek [3] explored multiple 

challenges with electronic commerce in an opportunistic 

routing setting and introduced an auction-centric system 

named MC-Market.  The prototype provides decisions 

about offers and pricing for various goods and services 

based on drivers’ locations, destination, and preferences, 

and can initiate context-sensitive auctions on pricing of 

services.  Like the work before it, efforts on MC-Market 

center largely on opportunistic routing in situations where 

the primary destinations of drivers are known. 

In this paper, we focus on opportunistic routing under 

uncertain destinations.  The work leverages prior work on 

probabilistic predictions of a driver’s destination. The 

problem of predicting destinations has been addressed by 

other researchers. Marmasse and Schmandt [4] presented 

experiments with a Bayes classifier, histogram matching, 

and a hidden Markov model to match a partial route with 

stored routes. Ashbrook and Starner [5] clustered GPS data 

to find a person’s significant locations like home and work, 

and then trained a Markov model to predict transitions 

between these locations. Hariharan and Toyama present a 

means of clustering GPS points and then use a Markov 

model to characterize transitions [6]. Liao et al. [7] and 

Patterson et al.  [8] describe probabilistic models for route 

prediction, trained from observations on individuals. 

Besides routes, their techniques can infer the person’s mode 

of transportation. The Predestination algorithm by Krumm 

and Horvitz predicts destinations based partially on past 

behavior, but also allows for predictions at previously 

unvisited locations [9]. Ziebart et al. train a location 

prediction algorithm from GPS observations of 25 taxi 

drivers [10]. Their algorithm reasons about route decisions 

in context and gives predictions for the driver’s next turn, 

their route to a given destination, and their next destination 

given a partially observed trip. The NextPlace system not 

only predicts destinations, but arrival times [11]. Filev et al. 

present a fuzzy Markov model for predicting previously 

visited destinations based on the previous destination, the 

day of the week, and the time of day [12]. 

While our technique recommends slight modifications to a 

driver’s existing route, other work has concentrated on 

recommending entire routes, such as the T-Drive system by 

Yuan et al. [13]. The same group has looked at helping taxi 

drivers find their next passenger [14] and travel 

recommendations based on GPS traces [15]. Also related is 

the work of Zhang et al. who learn a user’s important 

locations and routes [16]. 

DESTINATION PREDICTION 

Identifying the optimal waypoint, and associated diversion 

introduced to a trip, requires knowledge of the driver’s 

destination. Although a driver may sometimes provide a 

destination to a vehicle’s navigation system, this happens 

rarely. Thus, we take as a central focus the identification of 

ideal waypoints under uncertainty in a driver’s destination. 

To compute probabilities over destinations, we employ a 

destination prediction algorithm derived as a modification 

of the methodology described in [17]. The technique is 

based on the observation and expectation that drivers drive 

efficiently toward their destination. The method computes 

destination probabilities ὴὈ  for destinations Ὀ contained 

in a set of candidate destinations Ὀ , i.e. ὈᶰὈ . In the 

version of the algorithm we shall use in studies, the 

candidate destinations consist of all road intersections 

within 60 minutes driving time from the start of the trip. 

Figure 2: Distribution of trip durations. Durations of trips 

from U.S. National Household Travel Survey used to limit 

geographic extent of destination predictions and serve as a 

prior probability on candidate destinations. 



 

Figure 1 shows some candidate destinations on a map. 

We represent the driver’s current partial trip as a sequence 

of intersections, as shown in Figure 1. The sequence is 

derived from GPS data via a map matching algorithm 

described in [18]. As the driver moves to new intersections, 

we compute the driving time to all candidate destinations 

using the RPHAST route computation algorithm described 

in [19]. RPHAST is an algorithm for efficiently solving the 

one-to-many shortest path problem. When the driver 

reaches a new intersection, we identify, for each candidate 

destination, whether the driving time to that candidate has 

increased or decreased as compared to the state at the 

previous intersection. Decreased times are evidence that the 

driver may be driving to the candidate destination, and we 

multiply its probability by ὴ πȢωσς. Looking at 

transitions between pairs of intersections along a trip, this 

number gives the fraction of times that a driver will 

decrease the apparent driving time to his or her ultimate 

destination. This value of ὴ is derived from training on 20 

recorded driving trips. If the driving time to the candidate 

has increased, we multiply its probability by ρ ὴ. Then, 

we normalize the probabilities, so В ὴὈ ρᶰ . Since ὴ 

is relatively large, the ρ ὴ term tends to quickly reduce 

the probability of destinations that the vehicle is driving 

away from. 

In order to bound the geographic extent of the candidate 

destinations and to increase accuracy, we consider prior 

probabilities of each destination and update the likelihoods 

of candidates based on the likelihoods of the durations of 

trips, where times are marked from the trips’ beginnings. 

We use a distribution of driving times drawn from the U.S. 

2009 National Household Travel Survey 

(http://nhts.ornl.gov/). The distribution of trip times is 

shown in Figure 2, and details of how this was derived from 

the NHTS data are provided in [20]. 

Figure 5 shows how ὴὈ  changes over the course of an 

example trip. As the trip progresses, the candidate 

destinations with the largest probabilities tend to cluster 

near the trip’s end. 

IDEAL OPPORTUNISTIC DIVERSION 

We now explore methods for identifying the optimal 

waypoint of a set of candidate waypoints (e.g., fueling 

stations) and associated diversion in light of uncertainty 

about the driver’s destination. Let us assume that a 

predictive system continues to compute destination 

probabilities, ὴὈ , ὈᶰὈ  during a trip.  At some time 

during the trip, assume that the driver requests a 

recommendation for the best stop to make for refueling. In 

the general case, we need to consider waypoints and the 

diversion that each introduces in terms of adding distance 

and travel time to the route to the primary destination.  As 

the destinations are uncertain to the system, it must consider 

expected diversions under uncertainty.  We refer to Figure 3 

as a simple example to motivate expected diversion 

analyses. In this case, the driver is currently located at point 

L. Assume that the inferred destinations are either points ὃ 

and ὄ, and that each destination has equal likelihood, 

ὴὃ ὴὄ ρȾς. We also consider location X, which is 

not a destination of the driver, i.e.  ὴὢ π. We assume 

that the driver has an urgent need to stop for fuel 

somewhere soon, and there are fueling stations at points ὃ 

and ὢ. Our task is to identify the best fueling stop to 

recommend to the driver. 

If we recommend to the driver to choose the fueling station 

at A, but the driver is actually driving to point B, the 

diversion cost will be one unit. This is because driving 

directly to B is a distance of one, but the distance from L to 

A to B is a distance of two. We use the more general notion 

of a driving cost function, which could be distance or time, 

and compute the divergence as the extra driving cost 

introduced by the waypoint.  Referring to Figure 3, the 

divergence for point A is ὅὒO ὃᴼὄ ὅὒO ὄ
ς ρ ρ. Similarly, if we tell the driver to choose the gas 

station at X when the driver is actually going to point B, the 

cost of the diversion is ὅὒO ὢᴼὄ ὅὒO ὄ ὼ
ὶ ρ, where r is the shortest distance between X and B,           

ὅὢᴼὄ ὼ Ѝσὼ ρ. 

Since our onboard predictive system has access to 

destination probabilities, we can compute the expected costs 

of choosing the fueling station at ὃ versus at ὢ. The 

expected cost for any waypoint sums the products of the 

probability of incurring a diversion cost based on the 

likelihood of each destination and the cost (diversion cost) 

associated with that destination. Turning back to the 

 

Figure 3: Illustrative diversion analysis. Driver’s current 

location and points A and B form an equilateral triangle, 

with fueling stations at points A and X. Assume predictions 

show equal probability of driver heading to destinations A 

or B. If waypoint X is close enough, it may be preferred for 

fueling as that stop minimizes the expected total driving 

distance under current uncertainty in the final destination. 

http://nhts.ornl.gov/


 

illustrative example, the expected cost of choosing the gas 

station at ὃ is thus, 

ὧ ὴὃ ὅὒO ὃᴼὃ ὅὒO ὃ

ὴὄ ὅὒO ὃᴼὄ ὅὒO ὄ

ὴὢ ὅὒO ὃᴼὢ ὅὒO ὢ

πȢυρ ρ

πȢυς ρ

πȢπρ ὶ ὼ

πȢυ

 

We can compute the expected cost of choosing the gas 

station at ὢ in a similar way: 

ὧ ὴὃ ὅὒO ὢᴼὃ ὅὒO ὃ

ὴὄ ὅὒO ὢᴼὄ ὅὒO ὄ

ὴὢ ὅὒO ὢᴼὢ ὅὒO ὢ

πȢυὼ ὶ ρ

πȢυὼ ὶ ρ

πȢπὼ ὼ

ὼ ὶ ρ

 

We would recommend the fueling stop that associated with 

the smallest expected cost of diversion. In the example, the 

expected cost of diverting to the gas station at 8, ὧ, varies 

with ὼ.  The expected cost of choosing ὃ is invariant with 

ὼ. The plot in Figure 4 shows the values of ὧ  and ὧ as a 

function of ὼ, where we see that the gas station at ὢ 

becomes a worse choice when ὼ πȢωψφ, which is 

approximately where we have drawn ὢ in Figure 3.   

We note that, in the general case, the ideal waypoints are 

sensitive to the probabilities of destinations, the locations of 

candidate waypoints, and the topology of the road network, 

which rarely provides cases with the simplicity represented 

in the illustrative example.  Also, we typically have many 

candidate destinations to consider in the real world. From 

the previous section, each candidate destination Ὀ is part of 

a set of destinations, Ὀ. The expected cost of diverting to 

point ὤ when the driver is currently at point ὒ is 

ὧ ὴὈ ὅὒO ὤᴼὈ ὅὒO Ὀ

ᶰ

 
(1) 

The destination probabilities ὴὈ  come from the 

inferences about destinations as described above. These 

probabilities are recomputed as the trip progresses. In 

practice, we use Equation (1) to compute the best waypoint 

ὤᶻassociated with the minimum expected cost of diversion, 

by substituting in each waypoint candidate ὤ, computing 

the expected cost of divergence for each, and seeking the 

ideal waypoint as follows, 

ὤz ÁÒÇ ÍÉÎ
ᶰ

ὤ ὴὈ ὅὒO ὤᴼὈ ὅὒO Ὀ

ᶰ

 (2) 

 

Equation (2) represents computations at the heart of the 

opportunistic routing procedure.    

Although we used Euclidian distance in the example, it is 

more realistic to express cost as driving time. This is 

convenient, because we are already computing driving 

times to each candidate destination for the purposes of 

destination prediction. Also, we can employ real-time and 

forecasted traffic flows in computing expected divergences 

that are measured in additional expected driving times. We 

further note that Equation (2) could be modified to consider 

both the cost of transportation and the cost of goods or 

services in a broader cost-benefit analysis that might trade 

off the distance of travel for gaining access to less 

expensive goods, e.g., traveling to a more distant fueling 

station that provides less expensive gasoline.  Such a cost-

benefit analysis is considered in prior work on the Mobile 

Commodities prototype, which performed waypoint 

analysis for known destinations [2].  For now, however, we 

use simple driving time as the cost function, ignoring 

traffic. 

In the analysis in this study, we move each candidate 

diversion to the nearest road intersection. Thus, all locations 

in the algorithm are at intersections. In addition to the raw 

driving times, we also impose a U-turn penalty of 120 

seconds, which matches the value used by a major Web-

based provider of driving directions.  

We implemented and tested an algorithm for computing 

Equation 2. We note that this analysis is typically costly for 

real-world opportunistic routing: For each waypoint and for 

each destination under consideration the algorithm calls for 

the generation of an ideal route from the current location to 

the destination that passes through the candidate waypoint. 

Thus, the complexity of the analysis scales the cost of 

generating routes with the product of the number of 

waypoints and the number of destinations. Thus, realistic 

implementations of the methodology require very efficient 

methods for rapid route generation.  We employed a fast 

routing methodology call RPHAST as described by Delling 

et al. [19, 21]. RPHAST is in a class of fast routing 

algorithms called “contraction hierarchies”. In such an 

 

Figure 4: Exercising example (from Figure 3). Expected 

cost of diverting to X grows with x and eventually exceeds 

expected cost of diverting to A. 



 

algorithm, the graph representing the road network is 

augmented by short, precomputed shortest paths that the 

online part of the algorithm can use to more quickly 

compute long shortest paths. RPHAST is particularly aimed 

at the one-to-many shortest paths problem that computes 

driving times and routes from a single location (i.e. 

intersection) to many other locations (i.e. candidate 

destinations). RPHAST is orders of magnitude faster than 

the Dijkstra algorithm, and it runs in a few tens of 

milliseconds for each one-to-many problem on our regular 

PC (four cores at 2.67 GHz with 12 GB RAM). 

Figure 5 shows an example run of the algorithm for one 

trip. The figure shows a separate map for each of three 

points along the trip. The white line shows the full trip, and 

the black dots show the progression of the trip from its start 

in the lower right. The small dots show the candidate 

destinations, where the dots with small destination 

probabilities are more faded. The white circles show 

candidate diversions, which are fueling stations in this case. 

At each intersection encountered along the trip, the 

opportunistic routing algorithm computes the diversion with 

the minimum expected diversion cost. In Figure 5, these 

optimal diversions are shown as filled white dots with a 

rectangular label. In the three instances shown, the optimal 

diversion is ahead of the vehicle’s current location and 

close to the future route. 

TEST DATA 

We tested our algorithm using recorded GPS data and a 

database of candidate diversions maintained by our 

organization for business applications. Candidate diversions 

could be convenience stores, coffee shops, restaurants, or 

any type of business. For testing, we considered fueling 

stations as candidate waypoints, envisioning the common 

scenario where a driver attempts to refuel at a gas station 

that will not add significant driving time to a trip. Some of 

the fueling stations are shown on a map as white circles in 

Figure 5. 

The GPS test in our study consists of 100 trips recorded in a 

region around Seattle, WA, USA. These trips were 

carefully recorded by turning on the GPS logger at the trip’s 

start, waiting for a lock with the GPS satellites, and then 

turning off the GPS at the end of the trip. This approach to 

collecting trip information is more tedious than recording 

continuously, but it helps to ensure complete coverage and 

proper segmentation of the trips. The GPS data was 

sampled at 1 Hz. The 100 test trips did not include any of 

the 20 trips we had used earlier to compute ὴ for the 

destination prediction procedure. A map of the 100 test trips 

is shown in Figure 6. We considered destinations within 60 

minutes of the trip’s start as candidates, averaging 205,594 

   
(a) (b) (c) 

Figure 5: Predictions and diversions at three points along a trip. White line shows the actual trip, from beginning to end, 

starting at the lower right. Black dots show the intersections up to the current point of the trip. Cloud of small dots in the 

background shows the destination predictions, which tend to cluster more tightly together as trip progresses. White circles are 

candidate diversions (actual fueling stations), and filled white circle shows the optimal diversion with the name of the station. 

 

Figure 6: Corpus of trips for testing. 100 recorded trips we 

used for testing are displayed as separately colored paths. 



 

over the 100 trips in the test set. We evaluated our 

algorithm at each intersection encountered along each test 

trip, resulting in a total of 10,726 evaluations. In the next 

section, we describe the results of our evaluations with the 

opportunistic routing algorithm and some alternative 

procedures. 

TEST RESULTS 

For all 100 of the test trips, we computed the best diversion 

whenever the vehicle reached a new intersection along its 

trip. Prior to picking the best diversion, we recomputed and 

updated the destination probabilities for use in selection of 

an ideal waypoint. (For the first intersection, before we 

could do any predictions, we simply chose the nearest 

diversion by driving time.) As shown in Figure 7, the 

median extra diversion time is 73 seconds. This is an 

estimate of the extra time it would take to drive to the 

selected diversion and then on to the original destination 

over driving directly to the destination. It does not include 

the time stopped at the diversion, as this would be 

approximately the same for all diversions. 

We compared our algorithm to five other algorithms whose 

results are also given in Figure 7 (times are reported as 

medians): 

Nearest Drive Time. Select the diversion that is nearest to 

the driver in terms of driving time: 121 seconds. 

Nearest Drive Time Half-Space. Same as above, but limit 

diversion candidates to the half-space ahead of the driver’s 

current heading. This helps eliminate U-turns: 107 seconds. 

Nearest Distance. Select the diversion that is nearest to the 

driver in terms of Euclidian distance. This is what most 

current local search engines recommend: 210 seconds. 

Nearest Distance Half-Space. Same as Nearest Distance, 

but limit diversion candidates to the forward half-space: 

188 seconds. 

Known Destination. Assume driver explicitly tells the 

system their destination. This requires the possibly tedious 

and distracting entry of a destination: 0 seconds (mean was 

44 seconds). 

Except for the “Known Destination” case, our algorithm 

gives the smallest median diversion times. The median for 

“Known Destination” was zero, due to the fact that most 

routes in our test set passed at least one fueling station. 

We note that fueling stations in our test area are relatively 

dense. Other types of diversion candidates, like coffee 

shops or electric charging stations, may be less common. 

We evaluated our algorithm on reduced sets of gas stations, 

where we randomly deleted gas stations to achieve lower 

densities. The results of this experiment are shown in 

Figure 8. Here we compare our algorithm to the two best 

alternatives, Nearest Drive Time and Nearest Drive Time 

Half-Space. In all cases, our algorithm performs better than 

its competitors, and its relative savings improve as the 

diversion candidates become less dense. (Note the log scale 

on the vertical axis in Figure 8.) 

In looking for a diversion, drivers may prefer to specify 

approximately when they would want to stop. For instance, 

the driver may want to stop in the next 20-30 minutes for 

fuel while on a highway trip. The diversion suggested by 

the opportunistic routing algorithm may be immediately 

ahead or much farther away. The four alternative 

algorithms we tested (not including Known Destination) 

cannot make an intelligent suggestion for a diversion that is, 

say, 20 minutes away, because they have little or no idea of 

where the driver is going. Since our algorithm uses 

 

Figure 7: Given uncertainty about the destination, the 

opportunistic routing algorithm chooses diversions that 

minimize extra driving time, compared to other 

algorithms. The bars show the median extra driving time. 

  

Figure 8: Exploration of varying density. When candidate 

waypoins are less dense, the relative performance of 

opportunistic routing improves. Note that vertical axis is 

on a log scale. 



 

reasonable predictions of where the driver is going, it works 

much better for suggesting diversions at some given time 

ahead. We tested our algorithm against the two best 

alternatives, Nearest Drive Time and Nearest Drive Time 

Half-Space. For these two alternatives, given a pre-

specified future time interval, we chose the diversion that 

was closest to the middle of the interval, in the absence of 

other criteria for making the choice. For the opportunistic 

routing algorithm, we chose the diversion with the 

minimum expected diversion cost anywhere within the pre-

specified interval. 

The results of imposing a pre-specified look-ahead are 

displayed in Figure 10. In contrast to the previous results, 

the vertical axis is reported in minutes rather than seconds. 

Our algorithm does much better than the best alternatives. 

For instance, when the look-ahead time is 10-20 minutes, 

our algorithm saves over 12 minutes when comparing the 

medians. This savings is made more explicit in Figure 9, 

where we show the amount of time the opportunistic 

routing algorithm saves over the next best algorithm when 

comparing the medians from each experiment. 

EXPECTED VALUE OF ASKING 

As we saw in Figure 7, we can pick the best diversion if we 

know the driver destination, which we can get by explicitly 

asking. However, asking is at best bothersome and, at 

worst, a dangerous distraction. The expected value of 

asking incurs a definite cost of interruption for the uncertain 

benefit of providing a better waypoint.  However, the net 

value of asking may be low as the system may already be 

confident of the driver’s destination or because there are 

few choices of candidate waypoints to recommend. We 

explore the value of asking from a decision-theoretic 

perspective similar to prior work on the use of decision 

theory to guide decisions about engaging users in human-

computer interaction [22]. We consider specifically the 

expected value of asking a driver about the current 

destination.  The expected value of asking (VOA) is 

computed as the following: 

6/! ÍÉÎ
ᶰ
ὤ ὴὈ ὅὒO ὤᴼὈ ὅὒO Ὀ

ᶰ

 

          ὴὈ  ÍÉÎ
ᶰ
ὤὅὒO ὤᴼὈ ὅὒO Ὀ

ᶰ

 

     - ὅὃ             (3) 

 

The first term is just the expected cost of diverting to the 

waypoint   ὤᶻ  with minimal expected cost under 

uncertainty in the destination, as computed by Equation (2). 

The second term is the expected minimal cost of divergence 

with learning the destination. The core idea is that we will 

know the true destination after asking, but we are currently 

uncertain about the answer we will hear.  We can assume 

that the likelihood of hearing each answer is just the current 

inferred probability of each destination. For computing the 

current value of knowing the destination after asking, we 

select the minimal cost waypoint for each destination, and 

sum the costs of diverting to each of these waypoints as 

weighted by the probability that each destination is indeed 

the actual destination.  Finally, we must consider the cost of 

asking, ὅὃ , which is scaled to be measured in units of 

additional driving time that a user is willing to incur so as to 

avoid a distracting or annoying inquiry from the system. In 

summary, the VOA is the difference in the cost of the best 

waypoint to select under uncertainty, as computed by 

Equation (2), and the reduced cost associated with picking 

the best waypoint for each destination and weighting these 

costs by the likelihood of each destination, with 

consideration of the additional cost incurred with asking.  

When VOA is positive, it is worth asking the user about the 

destination.  Else, it is better to identify the single waypoint 

with lowest expected cost. 

 

Figure 9: For identifying desired waypoint at some time 

interval in the future, the opportunistic routing algorithm 

significantly reduces total driving time. 

 

 

Figure 10: Opportunistic routing algorithm performs 

significantly better than other procedures in a 

comparative analysis in situations where waypoint is 

desired at some pre-specified time interval in the future. 



 

We note that over a trip the point-wise VOA can be 

changing as the value of each term can shift based on 

changes in the probabilities inferred about different ultimate 

destinations, and the changing details of the geospatial 

structure of waypoints and the topology of the road network 

relative to the current location of the car.  Also, beyond a 

driver’s preferences about being asked about destinations, 

the cost of such an interaction can change based on several 

contextual factors, including whether a driver is currently 

speaking with a passenger and the complexity of driving.   

Studies in driving simulators have demonstrated the 

existence of a task-dependent microstructure of the 

interaction of human cognition and driving complexity, and 

the influence of different mixes of road complexity and 

cognitive tasks (e.g., introduced in phone conversations) on 

driving safety [23]. In practice a proactive system might 

monitor the value of asking and if positive defer engaging 

the user until a better time.  Other studies of bounded 

deferral of notifications and engagement are relevant to this 

task [24]. 

We performed a study with the same test corpus of 100 

recorded GPS trips aimed at exploring the expected value 

of asking using Equation (3) to compute the value of 

asking. We set ὅὃ π here for simplicity. We found that 

the median cost saved by asking is 16 seconds.  The 75
th
 

percentile of savings is 99 seconds, and maximum savings 

is about 23 minutes. The relatively low median shows that 

our algorithm is doing a good job recommending a 

waypoint, based on predictions. However, the value of 

asking can be high, so it can be valuable to ask about the 

destination.  

The VOA over the course of the trip from Figure 5 trip is 

displayed in Figure 11.  We display both the expected value 

of asking and the actual value of asking, computed by 

taking the difference of the driving time for the best 

waypoint under uncertainty and the driving time for a 

waypoint optimized for the actual destination. We also set 

ὅὃ π here. We note how well the VOA tracks the 

actual value of knowing the destination.  Also, we note that 

both the expected value and the actual value of knowing the 

destination vary over the trip, rising and falling. In use, a 

threshold could be set on the value of asking, and a question 

about the destination could be asked of the driver should a 

need for a waypoint (e.g., for fueling) arise or requested and 

a threshold in the expected value of asking exceeded. 

CONCLUSION AND FUTURE WORK 

We presented principles and studies of opportunistic 

routing for the general case where there is uncertainty about 

a driver’s destination. The methods are aimed at identifying 

ideal waypoints on the way to primary destinations, as 

candidates associated with minimal expected additional cost 

of driving. We introduced an opportunistic routing 

algorithm and demonstrated its performance in comparative 

studies with other methods with a test corpus of GPS data 

of 100 trips. Finally, we presented a formulation of the 

expected value of asking and discuss how this measure can 

be used to guide a system’s pursuit of additional knowledge 

about the primary destination. The methods and studies 

extend prior work on opportunistic routing to the case of 

uncertain destinations, and highlight the value of harnessing 

ongoing predictions about destinations to help with routing, 

and to guide decisions about resolving uncertainty by 

engaging people about their goals. 

In ongoing research, we seek to better understand how 

methods for opportunistic routing under uncertainty might 

be leveraged in different settings and applications.  For 

example, we are interested in the application of the methods 

for enhancing the quality of results provided in mobile 

search in cases where people search for goods and services 

by location. Given a search in a mobile setting, it may be 

most appropriate to rank results with a function that takes as 

arguments the relevance of results and the location of goods 

and services linked to those results.  However, there are 

questions about the best results to provide in mobile 

settings.  For example, if someone searches on “coffee 

shop” or “movie theater,” is it most appropriate to rank 

results by how near they are to the user’s current location, 

or how close they are to the predicted destinations?  As a 

third alternative, the results might best be ranked by the 

expected divergence associated with going to each of the 

locations of the goods or services and then on to a likely 

destination, per the focus of this paper. The most 

appropriate ordering over recommended locations depends 

on the transportation context. Using methods of 

opportunistic routing as an input to ranking search results is 

most applicable when the user is headed to a specific 

destination, and would wish to see relevant results that 

would make for efficient waypoints on the way to that 

 

Figure 11: Computation of expected value of asking driver about destination.  For a trip, we graph the expected value of 

asking the user and compare this with the actual value of resolving uncertainty about the destination. 



 

destination. Proximity-based ranking may be best for the 

transportation contexts where driver and passengers are 

either casually exploring a city or are leaving or planning to 

leave their homes and offices to head directly to the specific 

location before returning back.  Inferences about users’ 

transportation contexts may be feasible based on such rich 

attributes as location and velocity data, and streams of 

queries over time.   
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