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Abstract

Language models excel at following instruc-
tions but often struggle with the collabora-
tive aspects of conversation that humans nat-
urally employ. This limitation in grounding—
the process by which conversation participants
establish mutual understanding—can lead to
outcomes ranging from frustrated users to se-
rious consequences in high-stakes scenarios.
To systematically study grounding challenges
in human-LLM interactions, we analyze logs
from three human-assistant datasets: WildChat,
MultiWOZ, and Bing Chat. We develop a tax-
onomy of grounding acts and build models to
annotate and forecast grounding behavior. Our
findings reveal significant differences in human-
human and human-LLM grounding: LLMs
were three times less likely to initiate clarifi-
cation and sixteen times less likely to provide
follow-up requests than humans. Additionally,
we find that early grounding failures predict
later interaction breakdowns. Building on these
insights, we introduce RIFTS, a benchmark de-
rived from publicly available LLM interaction
data containing situations where LLMs fail to
initiate grounding. We note that current frontier
models perform poorly on RIFTS, highlighting
the need to reconsider how we train and prompt
LLMs for human interaction. To this end, we
develop a preliminary intervention aimed at
mitigating grounding failures.

1 Introduction

Language models used for conversational inter-
action are trained primarily to follow instruc-
tions (Ouyang et al., 2022). But effective dia-
logue requires more than just instruction-following.
Participants in conversation work together in a
collaborative process, resolving ambiguities as
they exchange ideas and achieve shared objectives.
They cultivate common ground1 through ground-

*Research performed during an internship at Microsoft.
1We use grounding to refer to Clark’s formulation of the

language, gestures, and signaling that participants in a conver-

Figure 1: People initiate grounding acts more fre-
quently than LLMs. In settings where a forthcoming
turn advances grounding (left), people are more likely
than LLMs to initiate follow-ups and refine interaction
goals. In situations where grounding challenges are ad-
dressed (right), repairs are primarily initiated by people.

ing processes: communicative behaviors aimed
at establishing and confirming mutual comprehen-
sion (Clark, 1996). Grounding mechanisms guide
how individuals anticipate and react to a conver-
sation partner’s contributions (Clark and Schaefer,
1989). Speakers implement grounding through di-
alogue acts. They work to confirm or clarify as-
sumptions, and ask follow-up questions. When
grounding breaks down, participants employ repair
strategies to resolve potential miscommunications.

In contrast, LLMs employed in conversational
systems generate task-centric content with minimal
grounding actions (Shaikh et al., 2024). Failing
to ground with users can be costly, with outcomes
ranging from the common situation of frustrated
users to that of serious consequences in high-stakes
situations (Figure 1). The process by which hu-
mans build common ground offers a useful lens
through which tounderstand human-computer inter-
action (Brennan, 2014). Ideal human-LLM ground-

sation employ to establish and maintain an effective dialogue
with shared understanding among actors (Clark, 1996).
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ing should allow for both human and machine ini-
tiatives, aimed at detecting misunderstandings and
achieving mutual understanding (Horvitz, 1999).

We start by assessing the current state of ground-
ing in human-LLM interactions, analyzing ground-
ing behavior through real-world interaction logs.
To examine human-LLM grounding, we first char-
acterize interactions through a set of validated di-
alogue acts (§3). In synthesizing these grounding
acts, we build on prior work in conversational anal-
ysis and dialogue systems. We cover acts that com-
municate progress (acknowledgment, follow-up,
etc.) and difficulty in grounding (repair, clarifica-
tion, etc.), initiated by either a human or LLM.

Using a set of grounding acts, we construct mod-
els of human-LLM grounding, which we use to
annotate and to forecastgrounding in conversation
(§4-5). We construct and validate an LLM-based
annotator, which enables efficient annotation of
logs from publicly available interactions with Chat-
GPT (WildChat), data from a widely used commer-
cial LLM service (Bing Chat), and Wizard-of-Oz-
ed interactions with a human roleplaying as an AI
(MultiWOZ). We additionally develop a grounding
forecaster that predicts the presence of grounding
acts in future turns. The forecaster enables a di-
alogue intervention that can proactively prevent
grounding difficulties in forthcoming turns.

Our analysis of human-LLM interaction data re-
veals significant asymmetries in initiating ground-
ing: people are three times more likely to clarify
and sixteen times more likely to issue follow-up re-
quests compared to LLMs. In addition, we find that
grounding failures occurring early in dialogue cas-
cade into higher likelihoods of downstream failure.
Overall, there is substantial room for improvement
in human-LLM interaction via addressing deficits
in conversational grounding.

To systematically measure human-LLM ground-
ing and test interventions, we introduce a new
benchmark (§6). RIFTS2 is a curated set of ≈ 1.8K
tasks—directly sourced from in-the-wild interac-
tion logs—that require selective use of clarification
and follow-up requests for interactive grounding.
Most frontier models struggle with RIFTS. While
we propose an effective intervention with our fore-
caster, progress on RIFTS will require rethinking
how LLMs are trained to interact with people.

2RIFTS can be accessed at this link:
https://github.com/microsoft/rifts.

2 Related Work

Ambiguity and Common Ground Disambiguat-
ing questions like “Did you see (the man (with
the telescope))?” requires establishing common
ground. While NLP benchmarks address am-
biguity (Min et al., 2020; Tamkin et al., 2022),
they focus on well-defined cases (e.g., reference
ambiguity). However, people engage LLMs for
open-ended tasks, e.g., creative writing and cover
letters—where correct answers aren’t predefined,
making common ground crucial. Using naturalistic
human-LLM interactions, we identify challenges
in building common ground. To operationalize
it (Clark and Schaefer, 1989; Clark, 1996; Stal-
naker, 2002), we synthesize dialogue acts based
on subdialogues (Litman, 1985; Litman and Allen,
1987) and conversation structure (Jefferson, 1972).

Grounding in Dialogue Systems Numerous
NLP systems from ELIZA onward have been de-
signed to initiate some form of conversational
grounding (Weizenbaum, 1966; Purver, 2004;
Li et al., 2023; Paranjape and Manning, 2021).
Decision-theoretic models have helped systems
manage uncertainty about user goals (Horvitz and
Paek, 2000a,b; Paek and Horvitz, 2003), while
multimodal approaches consider language and
visual cues (Pejsa et al., 2014). Human-LLM
grounding is crucial for tasks including goal-
coordination (Bara et al., 2021; Mohanty et al.,
2023; Fried et al., 2022; Li and Boyer, 2015), plan-
ning (Chu-Carroll and Carberry, 1998; Lochbaum,
1998), games (Madureira and Schlangen, 2023b;
Shaikh et al., 2023), data retrieval (Lu et al.,
2023), improvisation (Cho and May, 2020), and
design (Vaithilingam et al., 2024). AI-initiated
grounding improves conversation quality (Zhou
et al., 2022), enables human-AI collaboration (Lin
et al., 2023), and encourages humans to reflect
on LLM outputs (Park and Kulkarni, 2023). Our
work extends this by introducing methods and a
benchmark for studying grounding in real-world
human-LLM dialogue.

Proactive Mitigation of Grounding Failures
Research has explored the use of machine-learned
models to predict and mitigate grounding failures
in spoken dialogue systems. By forecasting po-
tential failures, models can guide proactive inter-
ventions. For example, in a call-routing system,
predictions of downstream grounding issues were
used to trigger early transfers to human operators,
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reducing user frustration and disengagement, like
pressing keys to access human assistants or aban-
doning calls (Horvitz and Paek, 2007).

LLMs and conversational grounding Current
LLMs appear to guess user intent and progress
with assumptions of correct inferences rather than
resolving uncertainties through grounding.3 This
manifests as generations of over-informative re-
sponses (Tsvilodub et al., 2023), refusal to han-
dle ambiguity (Abercrombie et al., 2023; Min
et al., 2020; Gao et al., 2021), and overconfi-
dence (Mielke et al., 2022). Prior work demon-
strated that LLM-powered conversational agents
fail to generate appropriate grounding acts (Shaikh
et al., 2024; Lu et al., 2024). Rather than measuring
human-LLM interaction through end-to-end eval-
uation (Lee et al., 2022; Chiang et al., 2024), we
consider discrete grounding acts in dialogues. Like
Schneider et al. (2024) and Shaikh et al. (2024), we
use prompted LLMs to classify these acts. While
prior work has explored generating clarification re-
quests through prompting (Kuhn et al., 2022; Chen
et al., 2023) and finetuning (Andukuri et al., 2024;
Zhang and Choi, 2023; Hong et al., 2023; Gan et al.,
2024), we examine grounding acts more broadly.

3 Human-LLM Grounding Acts

To measure grounding between people and LLMs,
we curate a set of dialogue acts that serve as prox-
ies for grounding. We outline our selected acts and
discuss prior work motivating each act. Our typol-
ogy builds on prior work in conversational ground-
ing: Clark and Schaefer (1989) and Traum and
Hinkelman (1992) outline a hierarchy of actions,
including discourse acts, that are used by humans
to ground with one another. Recent work has re-
visited conversational grounding in the context of
LLMs (Shaikh et al., 2024; Schneider et al., 2024),
focusing on a subset of acts generated mainly by
people (e.g, following-up, acknowledging under-
standing, and clarifying).

In contrast, we consider acts generated by both
LLMs and people. Our selected acts serve as
signals for effective grounding; we segment acts
across communicated grounding outcomes. We
focus on advancing the construction of common
ground, addressing a potential grounding failure,
or disambiguating. Using our typology, we can
measure grounding outcomes with observable dia-

3https://openai.com/blog/chatgpt

logue acts during human-LLM interaction (illustra-
tive examples in Table 1).

3.1 Addressing Acts
Addressing acts are made in response to detection
of inadequate grounding. They explicitly signal
a potential misunderstanding. Here, participants
engage with a focus on addressing the failure.

Reformulations occur when a participant repeats
or restates their query in other words because of
a failure to ground. An utterance is a reformula-
tion if the succeeding utterance from the same par-
ticipant is semantically equivalent to the original.
Reformulations are prevalent in search engine and
information retrieval domains (Lau and Horvitz,
1999).

Repairs also signal a grounding failure. Unlike
reformulations, the listener directly corrects a mis-
understanding from another speaker (e.g. I meant
do it in JavaScript, not Python.) (Schegloff, 1992;
Schegloff et al., 1977)

Restarts occur when users reset a conversation
to improve understanding and achieve a success-
ful dialogue. They often follow significant mis-
understandings, whether in the initial response or
across multiple exchanges. Users may restart due
to LLMs misinterpreting intent, ambiguity, sensi-
tivity, or irrelevant context (Shi et al., 2023), akin
to search query retries after irrelevant results (Lau
and Horvitz, 1999). Research on restarts includes
user decisions to suspend a dialogue and seek alter-
nate solutions, such as transferring from AI-based
systems to human operators before frustration es-
calates (Horvitz and Paek, 2007). Restarts are
classified when an initial instruction is repaired
or reformulated within 30 minutes (Radlinski and
Joachims, 2005; Downey et al., 2007).

3.2 Disambiguating Acts
The status of grounding may also be uncertain be-
tween participants. Rather than clearly indicat-
ing success or failure, disambiguating acts repre-
sent strategies that participants use to—potentially
inefficiently—lower the likelihood of potential mis-
understandings.

Clarifications occur when a participant seeks
to disambiguate an utterance from another partic-
ipant; or when a participant proactively “clears
up” misunderstandings. Clarifications often occur
when the task at hand is perceived as ambiguous
(e.g. What did you mean by that?). (Ginzburg and
Cooper, 2001; Purver et al., 2003b,a; Healey et al.,
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Type Act Example

Instruction Write a story.

Advancing Next Turn Once upon a time, in a mysterious forest...
Attempting to advance grounding with the next relevant turn.
Note: all other successful acts are a subset of Next Turn.

Acknowledge I understand. [I will write you a story.] Once upon...
Verbalizing understanding: “I see, O.K.” / repeating instruction.

Follow-up Once upon a time...
Can you make it longer?

Disambiguating Overresponse Writing a story requires a plan: First .... Also, here is an example story....

Clarify Do you want a story or plan to write one too?

Addressing Repair [Overresponse]

Just give me the story, nothing else.

Reformulate [Next Turn] - incorrectly assumed common ground.
Please write a story.

Restart [Next Turn] - incorrectly assumed common ground.
[User leaves session and restarts with the same instruction.]

Table 1: Examples of actions we formulated for understanding grounding in multi-turn human-LLM interaction.
These acts serve as proxies for a participant that attempts to advance grounding, disambiguating, or address
grounding.

2011, 2003; Purver, 2004; Stoyanchev et al., 2013;
Madureira and Schlangen, 2023a; Rahmani et al.,
2023).

Overresponses include more than what another
participant reasonably asked for. Unlike Next Turn,
which provides only expected information, over-
responses also anticipate and respond to potential
follow-ups, flouting the Gricean maxim of quan-
tity (Grice, 1975). Overresponses often appear as
overly verbose LLM-generated answers—a behav-
ior contemporary reward models are criticized for
encouraging by favoring longer responses (Singhal
et al., 2023).

3.3 Advancing Acts

Advancing acts signal that a participant under-
stands utterances from another participant.

Next Turns refer to the next conversational move
made by a listener that is expected, given the prior
turn(s) in a dialogue. Examples of relevant next
turns include directly answering a question, ex-
pressing an opinion (agreeing or disagreeing), or
apologizing. If no misunderstanding has occurred,
a listener has moved on to the next relevant turn by
default. (Levinson et al., 1983; Sacks et al., 1978;
Schiffrin, 1987). Note that advancing grounding
will initiate the Next Relevant Turn. We focus on
two: follow-ups & acknowledgments.

Follow-ups elaborate on a prior utterance in an

interaction. Unlike clarifications—which disam-
biguate or clarify—follow-ups seek additional in-
formation. Because follow-ups build on a prior
utterance, they implicitly signal understanding of
past utterances. (Davis, 1982; Graesser et al., 1995;
Traum and Hinkelman, 1992; Bunt et al., 2017).

Acknowledgments explicitly signal understand-
ing. These requests manifest either through explicit
dialogue (e.g. I see; I understand; O.K.) or by re-
peating portions of another participant’s utterance
(e.g. I can help you [write a story].) Unlike re-
formulation, where a listener repeats to address
failure, acknowledgment occurs when a speaker
repeats to demonstrate understanding. (Schegloff,
1982; Sacks et al., 1978; Schiffrin, 1987; Clark and
Schaefer, 1989; Cho and May, 2020)

4 Data

To analyze collaborative grounding with LLM-
based assistants, we draw from three English-
language datasets consisting of dialogues between
a human and an assistant. WildChat is a real-world
human-AI interaction dataset with interaction be-
tween people and several OpenAI models (Zhao
et al., 2024). User data was collected with con-
sent, in exchange for free access to the models.
We use the non-toxic version of WildChat, filter
conversations to be in English, and sample one con-
versation from each user. Bing Chat, similar to
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WildChat, was collected from a large chat-based
service used by millions of users, powered by Ope-
nAI LLMs. Finally, MultiWOZ is a crowdsourced
dataset of dialogue-based interaction with an assis-
tant (Budzianowski et al., 2018; Ramadan et al.,
2018; Eric et al., 2019; Zang et al., 2020). In con-
trast to WildChat and Bing Chat, MultiWOZ con-
tains human-human dialogues, with one human
playing a “wizard-of-oz” role as the assistant. We
use MultiWOZ 2.2 (Zang et al., 2020), examining
collaborative grounding acts on the validation and
test splits for a subset of the tasks. While we ob-
serve similarities in terms of the tasks posed by
humans across the three datasets, differences do
exist, which makes direct comparisons difficult. In
Appendix A.1, we outline the number of dialogues
and messages in each dataset.

5 Modeling Human-LLM Grounding

Given a defined set of grounding acts and data
drawn from logs of human-assistant interaction,
we can build grounding models. We first build
prompted classifiers that identify acts post-hoc and
describe the status quo of human-LLM ground-
ing (§5.1). Then, we train grounding forecasters,
enabling forecasting of grounding acts given just
the initial instruction (§5.2). With forecasters, we
can identify tasks where grounding is critical and
intervene when appropriate.

5.1 Classifying Human-LLM Grounding Acts

Method. We employ GPT-4o-mini to annotate
grounding acts across a subset of our datasets. On
subsets of our data, we observed nearly identical
results using GPT-4o compared to GPT-4o-mini.
Thus, we employ GPT-4o-mini for its affordability
to allow for efficiency and reproducibility. Fol-
lowing Shaikh et al. (2024), we first encode our
typology in a prompt (Appendix E.1) and label
each turn in the conversations. To validate the ac-
curacy of the approach, three authors annotated
10 dialogues (total of 108 messages) from each
dataset. We found that a great deal of the early
disagreement among annotators was in assessing
clarification vs. follow-up questions. Disgreements
were resolved through a round of discussion and
reannotation, reaching an average Cohen Kappa of
0.71 across the datasets. For the final dataset, ties
were broken through discussion, converging on a
final selection of the majority label. Using this as a
withheld test set, we find that Macro F-1 scores are
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Figure 2: Addressing Acts. In human-LLM
interaction—WildChat and Bing Chat—we observed
high rates of repair (row 1) and reformulation (row 2)
from human users. In contrast, users repair/reformulate
less when interacting with a human wizard-of-oz-ing as
an assistant (MultiWOZ).
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Figure 3: Disambiguating Acts. LLM assistants infre-
quently initiate clarification to avoid human repair (row
1). In Human-LLM interaction (WildChat, Bing Chat),
users clarify at significantly higher rates than assistants.
Human-human interaction (MultiWOZ), however, has
similar rates of clarification from both users and assis-
tants. Instead of clarifying, LLM assistants regularly
overrespond, disambiguating by generating more than
what the user reasonably asked for (row 2).

reasonably high across datasets (0.75). A full table
of results across labels is also in Appendix E.1.

Results. We observe significant differences be-
tween people and LLMs when initiating actions
aimed at grounding. In datasets where LLMs serve
as assistants, we observe that grounding acts are
taken primarily by people. People repair and refor-
mulate instructions at high rates; averaged across
human-AI interaction datasets, 5% and 18% of
human turns are labeled as reformulate and repair
respectively (Figure 2). In contrast to human-LLM
interactions, human-human interaction data (Multi-
WOZ) has fewer reformulate (4%) and repair (3%)
acts initiated by humans.

Session restarts serve as a final fallback when
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Figure 4: Advancing Acts. On all datasets, assistants
overwhelmingly initiate the next turn in conversation,
given instruction-following tendencies (row 1). De-
spite this, users construct more follow-ups when ini-
tiating the next turn compared to LLM assistants (row
2). In contrast, on MultiWOZ, containing interactions
between human users and human assistants, both gener-
ated follow-up questions. Finally, LLMs over-generate
acknowledgment acts (row 3), offering a false sense of
“understanding.” This is especially surprising, consider-
ing that humans repair and clarify more.

repair or reformulation fail to address a communi-
cated failure. We focus on users with multiple inter-
actions on WildChat (the only dataset that includes
user IDs) and identify if a session begins with a
repair or reformulation of an earlier instruction is-
sued within the last 30 minutes. 10.7% of sessions
are restarts of a session in the last 30 minutes—
exceeding the rate of repair in a conversation.

Before a human ends up addressing grounding,
an ideal LLM assistant would have proactively en-
gaged in clarification. However, we find that LLMs
clarify at significantly lower rates (p < 0.01, t-test)
compared to humans repairing. In fact, the opposite
occurs: people clarify LLM outputs (6%) 3 times
as much as LLMs clarify user instructions (2%;
Fig. 3). In contrast, humans and wizard-of-oz-ed
assistants clarify at similar rates (MultiWOZ; 3%
human user versus 2% human assistant).

Beyond repairing/reformulating, people regu-
larly ask directed follow-up questions when signal-
ing at successful grounding (Figure 4). Across
WildChat and Bing Chat, users ask 15.6 times
more follow-ups than LLM assistants. This dis-
parity is less apparent in human-human interaction
data, where human users only follow up 1.7 times
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Figure 5: Compounding Grounding Failures. The
plot shows the probability that the next turn in WildChat
will contain an addressing act given that the previous
n turns were addressing for n ∈ [4]. If a user signals
addressing in an interaction, we observe that the follow-
ing turns are more likely to be addressing. For exam-
ple, the conditional probability rapidly increases from
P (m0 ∈ U) = 0.12 to P (m1 ∈ U|m0 ∈ U) = 0.30.

more. Instead of generating follow-ups, LLM as-
sistants regularly over-respond (45% of assistant
turns), generating verbose responses that answer
more than what the user asked for. Humans rarely
overrespond—both when interacting with LLMs
(0%) or when roleplaying an assistant (5%).

Early grounding patterns also have rippling ef-
fects: we find evidence of compounding advanc-
ing and addressing patterns as a conversation pro-
gresses (Fig. 5). Let mi denote the message at
turn i, which can be an advancing grounding act
{mi ∈ S} or addressing {mi ∈ U} where S and U
denote the sets of advancing and addressing ground-
ing acts. The likelihood of an utterance represent-
ing an addressing act appearing in the first turn
P (m0 ∈ U) = 0.12 on WildChat, and 0.08 on
Bing Chat. We observe a compounding of address-
ing grounding in human-assistant conversations. If
we assume that the turn before was addressing, we
find that the likelihood of another failed interac-
tion triples: P (m1 ∈ U | m0 ∈ U) = 0.30 for
WildChat and 0.32 for Bing Chat. A similar effect
appears for advancing acts: early signs of effective
conversational grounding similarly snowballs, with
P (m0 ∈ S) = 0.32 → P (m1 ∈ S | m0 ∈ S) =
0.47 on WildChat and 0.23 → 0.44 on Bing Chat.

5.2 Forecasting Users’ Grounding Acts

In light of the compounding effect of grounding
failures (Fig. 5), we pursue the possibility of low-
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ering the probability of grounding failures byin-
tervening before a failure occurs. So far, we have
introduced a GPT-based annotator (from §5.1) that
annotates conversations with grounding acts in a
post-hoc fashion. However, our prompted annota-
tor only identifies opportunities for grounding after
they happen. Identifying or curating tasks where
grounding failures emerge requires predicting the
likelihood of future grounding patterns. To this
end, we train a forecaster that predicts grounding
acts in the next turn. We focus on WildChat as it is
the only publicly availible human-LLM interaction
dataset in our analysis.

Method. Following a user message mi, our goal
is to forecast grounding act gi+1 associated with
the next user message mi+1. We achieve this by
repurposing conditional training. Concretely, we
append each user message mi with a forecasting
grounding token gi+1 if the future turn mi+1 con-
tains a grounding act. Consider the hypothetical
training example below:

User: Help me write this section︸ ︷︷ ︸
m0

addressing︸ ︷︷ ︸
g1

Assistant: Sure, here’s the section...︸ ︷︷ ︸
r0

User: Wrong section. I meant 5.2.︸ ︷︷ ︸
m1

In the example above, we append a new forecasting
token g1 = addressing after the user’s initial
message m0, since the user’s following turn
is a repair. We use our validated grounding
acts labeler (§5.1) to obtain all gi, using the
high-level grounding categories as labels (e.g.
advancing, disambiguating, and addressing). We
finetune Llama-3.1-8B on sequences of form

< mi , gi+1 , ri , mi+1 , gi+2 , ri+1 , mi+2 . . . >
where ri is the assistant response.

At inference time, we can provide any user mes-
sage mi and analyze the predicted likelihoods (i.e.
logits) of our grounding tokens gi+1 ∼ P (·|mi)
that are generated right after. For example:

User: Help me with this︸ ︷︷ ︸
prompt m0

addressing︸ ︷︷ ︸
completion g1

This enables us to predict—from just a user
query alone—the user’s predicted grounding out-
come independent of the model’s response! This
is an especially challenging learning problem: we
effectively marginalize over all possible assistant
responses. Successfully learning this model en-

ables early intervention. All hyperparameters used
in the training process are outlined in Appendix B.
Beyond our finetuned forecaster, we also evalu-
ate as a baseline few-shot prompted GPT-4o-mini
(details in Appendix E.2).

Results. We find that our GPT-4o-mini few-shot
baseline performs near-random, with Macro ROC
AUC = 0.51. This result is not very surprising as
forecasting is a challenging task: we must predict
grounding acts gi+1 without directly observing as-
sistant responses ri. Our intuition is that it’s much
easier to look at an entire conversation and label
the conversation for grounding acts post-hoc than it
is to forecast a likely grounding act without being
able to “see” future turns. Our finetuned forecaster,
however, performs significantly better (0.61). Full
experimental results are in Appendix B. In the next
section, we draw representative samples from the
forecaster, constructing a benchmark where users
are (un)likely to initiate a grounding process.

6 RIFTS: A Grounding Benchmark

We showed that LLMs fail to generate grounding
acts in two settings. They rarely:

• Clarify goals to reduce the rate at which a user
is likely to address grounding.

• Follow-up to advance grounding, instead of
relying on the user to take initiative.

To characterize these behaviors across multiple
LLMs and evaluate interventions, we introduce a
new benchmark, RIFTS. RIFTS consists of ≈ 1.8K
tasks designed to test if LLMs can generate ground-
ing acts when needed and withhold appropriately.

Dataset Details. RIFTS consists of a final com-
bined set of 1740 tasks (split counts in Appdx. Ta-
ble 8). Each task in RIFTS is a prompt drawn
from an initial instruction in WildChat. Tasks are
stratified based on how the user is predicted to
continue the conversation: namely, are users pre-
dicted to advance grounding, address a failure, or
disambiguate following an LLMs response (exam-
ples in Table 2). For these tasks, we would expect
an LLM to take initiative—clarifying or follow-
ing up appropriately. In addition, we include tasks
where the user is expected to do none of the above,
perhaps by switching the topic or ending the inter-
action altogether. Here, no grounding is required.
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Category Prompt from RIFTS Benchmark

Advancing Write a Main heading about a brand name FFF Digital , which is a digital marketing agency
Suggest a name for a technical blog consisting of five characters at most, which is compatible with SEO
1 week out from my powerlifting meet and i’m not prepared [...] what should i do? [omitted context]

Addressing Blackburn rovers vs West Bromwich albion prediction
I need to remove a heart
[snippets of code with no prompt]

Disambiguating What causes tailbone pain?
My friend not want to help me, what to [do] with him?
What happens when someone quits a job without having another one lined up?

No Grounding convert rust String to clap::builder::Str
Generate a full harvard references section for the following report: [REPORT]
Join now, Supplier! or Supplier, Join us! which one is better?

Table 2: Examples in RIFTS fall into four categories. Advance tasks are collaborative (e.g., resume building, diet
planning, writing), where following up is necessary. Address tasks are severely underspecified (e.g., contextless code
snippets), or require capabilities LLMs lack (realtime information access)—these tasks need substantial clarification
before any meaningful response is possible. Disambiguating tasks are less severe, but still need context clarification
(e.g., medical queries, relationship advice) for an ideal response. None tasks are well-specified and factual, requiring
no intervention. See §A.2 for a lexical analysis of tasks in RIFTS.

Curation Process. We construct RIFTS by filter-
ing prompts from WildChat, using the predicted
grounding act of the forecaster from §5.2. Fore-
caster predictions inform us on whether a clarifi-
cation or followup action will be required in the
conversation. In building RIFTS, we implicitly
hypothesize that for some prompts mi, regardless
of what the LLM replies with (ri), the user is in
grounding trouble. In other words, if a user gives
a query to a model that’s so severely underspeci-
fied (e.g. mi = “write me a resume”), it does not
matter what any LLM responds with. The user
must go back and forth to build common ground,
since they never gave enough information in the ini-
tial prompt. RIFTS identifies this class of prompts,
using the forecaster as a proxy.

We first filtered correctly predicted tasks from
forecasters trained4 on each split (train / val / test).
For each grounding category, we then extracted
the top 150 tasks with the highest likelihood of
generating advancing, addressing, or ambiguous
forecasting tokens. In other words, we repurpose
our forecaster to curate representative tasks across
each grounding act, sorting by the logit associated
with each forecasting token. In addition, we sample
150 tasks that have a high likelihood of generating
no forecasting token, capturing tasks that do not
require initiative. Finally, we apply basic quality
controls (see Appendix C).

4Why train on each split? To ensure fair evaluation, we
create separate forecasters for train / val / test. This prevents
leakage and enables researchers to develop interventions using
the train forecaster before evaluating with the test forecaster.

Evaluating LLMs. RIFTS simplifies evaluation
for any assistant model Passistant. Consider the two
failure modes where LLMs do not take initiative:
clarify and followup. Given a task from RIFTS in
the advancing category, we would prefer Passistant

to proactively generate a followup. On the other
hand, for tasks in addressing or disambiguating,
we would expect Passistant to generate clarification
questions. In instances where we forecast no act
from the user, we do not wish to see the model
inefficiently engage in grounding activity.

To evaluate performance, we take an initial in-
struction u0 from RIFTS, and sample the next
turn r0 from Passistant(u0). We then label r0 with
our validated grounding acts annotator (§5.1). To
benchmark Passistant, we evaluate if the generated
response r0 clarifies/follows-up when appropriate.
Concretely, we instantiate our two failure modes
(clarify, followup) in the following EVAL(u0, r0)
function and report an overall accuracy score:

1r0=follow-up if u0 ∈ Advancing
1r0=clarify if u0 ∈ Addressing ∪ disambig.
1r0=neither if u0 /∈ (Addressing ∪ dismbig.)

Off-the-shelf models struggle. We evaluate a
handful of open- and closed-source models on
RIFTS’ test set: OpenAI’s GPT-4(o) series, An-
thropic’s Claude Sonnet 3.5 / Opus 3, and Llama
3.1 8 / 70B (Table 3). We find that all off-the-
shelf instruction-following models (avg. 23.23%
acc.) perform worse than random (33%). All of our
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Model Variant RIFTS Accuracy

GPT 4o 25.26 ± 3.54
4o-mini 24.48 ± 3.51
o3-mini 25.26 ± 3.54

Claude Sonnet 3.5 26.95 ± 3.57
Opus 3 24.57 ± 3.51

Llama 3.1 8B Instruct 24.22 ± 3.49
70B Instruct 23.88 ± 3.47

Llama 3.1 8B + GROUND 54.48 ± 2.45

Table 3: Evaluating LLM grounding ability on RIFTS.
Frontier LLMs are ill-suited for grounding with hu-
mans on real-world tasks, with low accuracies across the
board. A simple intervention (+ GROUND), based on
our forecasters, can significantly improve LLM ground-
ing (± indicates a 95% conf. interval).

evaluated LLMs perform near perfectly for tasks
that require no grounding initiative (No Ground-
ing category, 96.09%); this is unsurprising given
instruction-following. However, LLMs fail to take
appropriate initiative for any of the remaining cat-
egories (2.22% of the time, Table 7). Reasoning-
tuned models don’t help either: o3-mini regularly
begins reasoning without verifying grounding.

A simple intervention. To improve grounding
capabilities, we turn again to our forecasters (§5.2).
Depending on the train forecaster’s prediction, we
can selectively add a prompt (+ GROUND) that
instructs the LLM to ask follow-up questions or
request clarification (prompts in Appendix E.3).
Concretely, we append a clarification prompt if
our forecaster predicts address or disambiguate;
or a follow-up prompt if our forecaster predicts
advance. With this intervention, Llama 3.1 8B out-
performs all other models by at least 32%. Still,
our intervention is far from perfect. RIFTS opens
avenues for benchmarking new interventions, en-
abling easy evaluation of grounding capabilities in
future work.

7 Discussion and Conclusion

We characterized (§3) and measured (§4-5) inade-
quate grounding in human-LLM interaction; and
proposed a benchmark (§6) to assess this gap. Sev-
eral directions emerge:

Should we expect grounding behavior from
LLMs? Perhaps we should not be surprised that
LLMs are unable to initiate grounding, defaulting
instead to instruction-following. Models that are

not trained to follow instructions are already biased
towards instruction following behavior, likely be-
cause of the large presence of instruction following
articles in pre-training mixes (Hewitt et al., 2024).
In addition, limitations in theory of mind and other
metacognitive challenges may restrict the ability of
models to engage in grounding interactions (Sap
et al., 2022; Ullman, 2023). Training methods must
counteract these limitations and biases. Still, we
see promise in future methods that elicit grounding
capabilities from LLMs; and RIFTS can serve as a
resource to test these methods.

Towards LLMs that initiate grounding.
Decision-theoretic methods could guide when and
how LLMs initiate grounding actions, based on
inferred uncertainties in mutual understanding
(see Horvitz (1999); Mozannar et al. (2024)).
Instruction tuning could be revised to incorporate
grounding, and our forecaster could serve as a
reward model in RLHF (Ouyang et al., 2022).
System prompts and dialogue management show
promise, including prompts to disambiguate user
intentions (Chen et al., 2023).

Benchmarking human-LLM grounding. Build-
ing models that ground effectively with humans
across a range of tasks requires effective bench-
marks. RIFTS supports comparative analyses, en-
abling discussion on grounding competencies of
new LLMs and interventions.

Limitations

We considered grounding and engagement with
Bing Chat in the absence of access to existing sys-
tem meta prompts. System prompts can greatly
shape the responses and provide specific guidance
on the flow of dialogue. RIFTS was also collected
by filtering WildChat using our forecaster; there-
fore, RIFTS will only reflect tasks seen in Wild-
Chat. In addition, tasks in RIFTS also depend on
the LLMs used to serve WildChat (e.g. OpenAI
LLMs). More specifically, our forecasters implic-
itly learn what tasks fail for the GPT models de-
ployed in WildChat. Regardless, we observe that
our final RIFTS tasks are challenging for all evalu-
ated models. Finally, our annotator relies on GPT-
4o-mini to label logs with grounding acts. While
we did show that the annotator generally agrees
with human judgment on a subset of the data (§5.1),
the annotator is not perfect.
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Ethics Statement

Enhancing an LLM’s ability to generate grounding
acts (by initiating clarification and follow-up ac-
tions) raises potential concerns around privacy, as
these actions may lead users to disclose sensitive
information unintentionally. Balancing the need for
grounding with the careful collection of only rel-
evant information remains a significant challenge
and an area for future research. Moreover, while ef-
fective grounding can improve interaction quality,
it can also be misused in harmful contexts. Al-
though our work focuses on improving grounding
for constructive purposes, such as assisting users,
these techniques could be exploited for harmful
ends (e.g., manipulation, persuasion, or coercion
in sensitive areas like political targeting).

Finally, our description of human-LLM ground-
ing does not imply that LLMs possess genuine
understanding. Like prior work, we use ground-
ing acts to describe interaction processes that help
align human expectations with LLM-generated re-
sponses (Paek and Horvitz, 2003; Brennan, 2014;
Shaikh et al., 2024). While human conversation
involves active mutual comprehension, the same
cannot be said of LLMs. The use of grounding
terminology in this work is intended as a concep-
tual tool to analyze how LLMs facilitate or hinder
effective communication, not as an anthropomor-
phic assertion that they share human-like cognitive
capacities.
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A Dataset Splits and Details

A.1 Full Datasets
Table 4 outlines the number of dialogues and messages in each of our final filtered datasets.

Dataset Number of Messages Number of Dialogues

WildChat 110688 55344
Bing Chat 26200 13100
MultiWOZ 980 490

Table 4: Number of messages and dialogues across our three analyzed datasets.

A.2 Descriptive Analysis
To quantify lexical differences between tasks in RIFTS and general instructions, we fit a Fightin’ Words
model between each cataegory and the full corpora (Monroe et al., 2008). Fightin’ Words reveals words
that are associated with each particular text distribution, producing a log-odds ratio and a corresponding
z-score. We select a sample of significant words that characterize each category in Table 5.

Label Words (z-scores)

No Action events (6.07), params (4.84), worksheets (3.78), quotation (3.42), answers (2.11), exam (2.03)

Advancing stock (5.24), dividend (3.77), regression (3.60), parents (3.23), investment (2.97), podcast (2.93)

Addressing sort (7.76), point (7.51), https (5.80), var (4.75), scan (3.45), merge (3.25), array (3.16)

Disambiguating bitcoin (4.66), chatbot (4.24), cryptocurrency (4.01), unauthorized (2.39), beginners (2.19), friends (2.02)

Table 5: Lexical cues from RIFTS reveal distinct task characteristics. No Action tasks involve users who are often
trying to simply get answers for homework questions (e.g., worksheets), needing no follow-up. Advancing tasks
(e.g., "stock," "dividend") imply iterative interaction, as in investment management. Addressing tasks feature
technical, underspecified language (e.g., "sort," "array") that requires extra context—users often submit code with
no explicit task. Finally, Disambiguating tasks (e.g., "bitcoin") indicate a need for clarification on topics with
inherent uncertainty: bitcoin, for example, is volatile, and beginners often have to clarify when learning.

B Training Forecasters

Forecasting grounding is a challenging task; we are trying to predict if a user will have trouble for a
task without observing an LLMs generation. In other words, we can only use the task to predict future
grounding patterns. We trained all models for 5 epochs (picked using the validation set), with learning
rate 5e-5, batch size of 1, and 16 gradient accumulation steps (e.g. effective batch size of 16). All
training occurred on an H100 80GB GPU. Below, we outline training optimizations that helped improve
forecasting performance.

B.1 Subsample Grounding Acts
We subsampled WildChat data to include equal amounts of each forecasted grounding act before training.
Inequal splits would result in the forecaster always predicting the majority class. To build our train/val/test
splits, we sampled the maximum number of tasks (1630) possible from each of our forecaster categories
(1640× 4 for fix, followup, continue, end) while ensuring that each task was equally represented.

B.2 Don’t Mask User Tokens
In addition to adding forecasting tokens, we make a modification to standard LLM finetuning/inference
practices: we do not mask user utterances in the loss, training on user input. While the general effects
of masking user tokens are mixed (Huerta-Enochian and Ko, 2024; Shi et al., 2024; Gottesman, 2024),
our setting requires the modeling of user input, as we seek to understand and assist with user grounding.
Because we do not mask user tokens, we can additionally simulate user inputs with past interaction data.
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B.3 Reweight Control Tokens At Train Time
We seek to encourage our model to learn our added forecasting tokens alongside the language modeling
objective. The standard MLE objective optimizes a model’s parameters θ with respect to a sequence
x: L(θ) = −

∑T
t=1 log pθ(xt|x<t). However, a subsequence xs...e consists of forecasting tokens, which

we want to emphasize—especially since these tokens did not undergo pretraining. At training time, we
upweight these tokens by λ = 2. Our final loss is below:

L(θ) = −
T∑
t=1

{
λ · log pθ(xt|x<t), if s ≤ t ≤ e

log pθ(xt|x<t), otherwise

B.4 Experimental Results

Few-shot GPT-4o-mini Llama 3.1 FT

Followup 0.52 0.61
Fix 0.49 0.60
Next Turn 0.52 0.67
End 0.51 0.57

Macro 0.51 0.61

Table 6: Forecasting performance. Per-label and Macro AUROC for forecasting task on the WildChat test set,
conditioned on the initial prompt.

In Table 6 we show the performance of our fine-tuned Llama 3.1 model compared to a few-show
prompted GPT-4o-mini at forecasting grounding acts. We note the per-label and macro AUROC on the
WildChat test set.

C Filtering Criterion

While we sample tasks from the forecaster tails to construct RIFTS, we manually filter out tasks that ask
for explicit content generation or ask the LLM for API keys, gift card codes, etc. Additionally, we passed
tasks through the OpenAI moderation API, and filter out flagged tasks.

D RIFTS

Model Addressing (%) Advancing (%) No Grounding (%) Disambiguating (%)

o3-mini 4.14 1.35 90.65 8.22
gpt-4o-mini 2.07 0.68 96.40 2.07
gpt-4o 2.76 1.35 98.56 2.05
claude-3-opus 1.38 1.35 96.40 2.74
claude-3-5-sonnet 2.76 2.03 97.84 4.79
Meta-Llama-3.1-8B 0.69 2.03 96.40 1.37
Meta-Llama-3.1-70B 0.00 2.03 96.40 0.68

Average 1.97 1.55 96.09 3.13

Table 7: Per-label accuracies for various models on RIFTS. Most models correctly withhold initiation for tasks that
require no grounding. However, this comes at a cost: models struggle at taking initiative for all other categories.

D.1 More Tasks
We include a handful of tasks from Rifts directly in the paper (Table 2). Our full bench-
mark and set of tasks can be found at our anonymous repository link, under the rifts folder:
https://anonymous.4open.science/r/rifts-B7E4/

E Prompted Models

All of our prompts are located in the prompts folder in the following anonymous repository:
https://anonymous.4open.science/r/rifts-B7E4/. We detail each prompt used in our analysis below:
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Category Train Val Test

Advancing 147 142 148
Addressing 144 143 145
Disambiguating 146 147 146
No Grounding 146 147 139

Table 8: RIFTS evaluation splits across 1740 total tasks.

Grounding Act Support 4o-mini few-shot (F1 Score)

Next Turn 38 0.84
Acknowledge 4 0.67
Follow-up 17 0.80
Overcontinue 21 0.76
Clarify 7 0.67
Repair 10 0.74
Reformulate 11 0.78

Macro 108 0.75

Table 9: F-1 for Human-LLM grounding acts classification on a withheld test set of 30 conversations from our
selected dialogue datasets. In the few-shot setting, GPT-4o-mini has fairly high F-1.

E.1 Grounding Acts Labeling Prompt
We construct a few-shot prompt to annotate grounding acts across our datasets. The first author prompt-
engineered a prompt on a small validation set. Our full prompt is availible in the anonymous repo.

E.2 GPT Forecaster Baseline Prompt
Alongside our finetuned Llama forecaster, we test a prompted baseline. We provide our prompted baseline
with a few shot (task, future grounding act) pairs sampled from the forecaster train set. Our full prompt is
in the anonymous repo under the prompts folder.

E.3 Intervention Prompt
Our GROUND intervention relies on two prompts, both in the anonymous repo under the intervention
folder. Specifically, we construct a follow-up prompt and a clarification prompt. Both prompts directly
instruct the LLM to generate a clarification question or generate the answer + a followup. Our intervention
is dumb by design—the forecaster decides when to employ a static prompt. In instances where our train
forecaster predicts address, we enable the clarification prompt. Similarly, when our forecaster predicts
advance, we employ the followup prompt. Given the improvements we see with our intervention, we
expect that models trained to initiate grounding acts will substantially improve on RIFTS.

F License Information

The Multiwoz (Eric et al., 2019) dataset we analyze has the MIT license, the license file is available at 5.
The Wildchat (Zhao et al., 2024) dataset has the ODC-By license, license information is available here

6. By consequence RIFTS is also released under the ODC-By license.
We rely on the Llama 3.1 models, the license for those models is available here 7.
We obtained permission from the ethics review board to analyze the Bing Chat data logs and release

the analysis in this paper.

5https://github.com/budzianowski/multiwoz/blob/master/LICENSE
6https://huggingface.co/datasets/allenai/WildChat/blob/main/LICENSE.md
7https://www.llama.com/llama3_1/license/
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