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ABSTRACT

Objective: To analyze gender bias in clinical trials, to design an algorithm that mitigates the effects of biases of

gender representation on natural-language (NLP) systems trained on text drawn from clinical trials, and to eval-

uate its performance.

Materials and Methods: We analyze gender bias in clinical trials described by 16 772 PubMed abstracts (2008–

2018). We present a method to augment word embeddings, the core building block of NLP-centric representa-

tions, by weighting abstracts by the number of women participants in the trial. We evaluate the resulting

gender-sensitive embeddings performance on several clinical prediction tasks: comorbidity classification, hos-

pital length of stay prediction, and intensive care unit (ICU) readmission prediction.

Results: For female patients, the gender-sensitive model area under the receiver-operator characteristic

(AUROC) is 0.86 versus the baseline of 0.81 for comorbidity classification, mean absolute error 4.59 versus the

baseline of 4.66 for length of stay prediction, and AUROC 0.69 versus 0.67 for ICU readmission. All results are

statistically significant.

Discussion: Women have been underrepresented in clinical trials. Thus, using the broad clinical trials literature

as training data for statistical language models could result in biased models, with deficits in knowledge about

women. The method presented enables gender-sensitive use of publications as training data for word embed-

dings. In experiments, the gender-sensitive embeddings show better performance than baseline embeddings

for the clinical tasks studied. The results highlight opportunities for recognizing and addressing gender and

other representational biases in the clinical trials literature.

Conclusion: Addressing representational biases in data for training NLP embeddings can lead to better results

on downstream tasks for underrepresented populations.
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BACKGROUND AND SIGNIFICANCE

For decades, clinical trials excluded women participants.1,2 A cited

basis for this exclusion was the Thalidomide tragedy of the early

1960s, which led to pregnant women being considered as vulnerable

research subjects, and for women of child-bearing potential to be ex-

cluded from early-phase clinical trials.1 Another reason cited for ex-

cluding women was the added complexity of the menstrual cycle

and its unknown effects on trial results.3 1993 was a turning point,

when both a Food and Drug Administration guideline and the Na-

tional Institutes of Health (NIH) Revitalization Act mandated that

clinical trials must include women participants and to analyze

results with respect to gender.1 However, many years of clinical re-

search performed before 1993 did not include representative num-

bers of women participants. Further, the gender bias in enrollment in
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clinical trials has continued.2 Despite NIH policies, clinical trial results

are not analyzed with enough care about the representation and influ-

ences of gender, race, or ethnicity.4 Although gender represents a wide

spectrum and not a binary selection,5–7 in this work we focus on bi-

nary biological sex determined by chromosomes and genitalia.

The poor representation of women in clinical trials can have

grave consequences. For example, women can experience higher

rates of adverse drug reactions than men.8–10 A specific example is a

sleep-inducing drug named Zolpidem. A postrelease study found

that it takes longer for the drug to be cleared in women, potentially

causing unexpected driving impairment on the day following use.11

We explore the identification and mitigation of gender biases in

clinical trials data used to build predictive models with statistical

natural language processing (NLP). NLP is being used in numerous

healthcare applications, such as processing patient charts to predict

diagnoses,12 triaging patients in the Emergency Room,13 and en-

hancing efficiencies of healthcare operations via automatic assign-

ment of disease codes to patient records.14 Constructing these

models requires a large training corpus of text. Literature describing

clinical trials has been used in prior work to construct models. For

example, BioBERT,15 a contextualized embedding model trained on

PubMed abstracts and PubMed Central full-text articles,16 achieved

state-of-the-art performance in biomedical relation extraction,

named entity recognition, and question answering tasks.

Diagnostic and predictive models constructed via machine learn-

ing and NLP have been shown to inherit biases latent in datasets.17–

19 Just as inferences made from gender-biased enrollments in clinical

trials can lead to misdiagnoses and unexpected adverse drug reac-

tions in women, models developed from NLP embeddings built from

literature on gender-biased clinical trials can lead to gender-specific

gaps in performance.20

Word embeddings21–24 have grown to be central tools in learning

and reasoning in language-centric applications. Embedding methods

transform words into real-numbered vectors that capture their mean-

ing in a semantic space of concepts. To date, a sizable amount of

work has been done on biases in word embeddings. Numerous stud-

ies have focused on the detection and mitigation of unwanted stereo-

typical associations in word embeddings stemming from language

usage that reflects long-term cultural biases.25–30 Biases in word

embeddings can manifest as unwanted proximities among words, for

example, “homemaker” and “woman,” or “engineer” and “man.”

Mitigations have focused on ways to remove or neutralize such

unwanted associations from the embeddings and to make them gen-

der neutral. One approach proposed for handling biases identified in

clinical tasks is the strategy of removing the protected attribute (eg,

gender).20 However, for healthcare applications, gender has impor-

tant physiological implications per disease prevalence and symptom-

atology. Gender is an important feature that can and should be used

when diagnosing diseases, prescribing medications, and more.

In healthcare, unlike many other domains, important metadata

about patients and situation is available and can be used to inform

the training process. We describe methods in the context of gender,

but the approach can be applied to other types of metadata about

cases, such as demographic information, including age and race. We

propose a method to train a gender-sensitive word embedding. In

the approach, a specific paper abstract’s contribution to the word

embedding model is proportional to the number of female partici-

pants in the clinical trial. Intuitively, we wish to boost the impact of

clinical trials that include more women on the embeddings, which

will in turn be used for clinical prediction tasks for women. To

achieve this, we merge 2 sources of data: the abstracts describing the

clinical trials from PubMed, and the number of female/male partici-

pants in each respective clinical trial accessed from ClinicalTrials.-

gov. We draw large amounts of electronic health record (EHR) data

from Maccabi Healthcare, the second largest healthcare provider in

Israel, to validate our embeddings on comorbidity prediction tasks.

MATERIALS AND METHODS

Datasets
We use multiple datasets to analyze the bias in clinical trials, train

gender-sensitive embedding models, and evaluate the models.

We leverage data from PubMed and ClinicalTrials.gov.

PubMed16 is a publicly available repository, containing more than

32 million citations of biomedical publications. We used the 2018

version of PubMed, which contains a total of 10 931 225 papers

published between the years 2005 and 2018 (out of 18 789 150

papers in total). ClinicalTrials.gov,31 also publicly available, con-

tains the data and metadata regarding clinical trials. We make use of

metadata on female and male participants included in the Clinical-

Trials database. We used the NCT identifiers available in PubMed

abstracts to match clinical trial abstracts with the metadata from

ClinicalTrials.gov. After matching, the corpus contains 16 772

abstracts with available metadata.

For a source of real-world clinical outcomes and health informa-

tion, we gained access to EHR data from Maccabi Health Services.

This database provided diagnoses for more than 2 million patients,

collected over the years 2003–2016. This database has been used in

prior research.32–35

We compared the gender statistics on disease prevalence from

the Maccabi database to those collected in the National Health In-

terview Survey (NHIS)36 held in 2018 in the United States. We

found that, for several main diseases, the percentages were similar,

including coronary heart disease (NHIS: 4.8% in women, 8% in

men; Maccabi: 4.5% in women, 9% in men), diabetes (NHIS: 9.9%

in women, 10.9% in men; Maccabi: 9.2% in women, 10.6% in

men), and asthma (NHIS: 15.2% in women, 11.4% in men; Mac-

cabi: 14.6% in women, 15.6% in men). Out of the 2 million patients

in the Maccabi EHR, 1.2 million patients had at least 2 diagnoses,

and 51.6% of them are women. We randomly divided the patient

data into 2 equally sized groups and used each one to build 2 evalua-

tion tasks (see the “Comorbidity classification” section).

Another source of real-world clinical data is Medical Informa-

tion Mart for Intensive Care III (MIMIC-III).37 MIMIC-III is a large,

freely available dataset containing de-identified data from over 40K

critical care patients, collected over the years 2001–2012. It includes

demographics, diagnoses, procedures, medications and more. We

used this dataset to construct 2 additional clinical evaluation tasks

for our models: hospital length of stay prediction (“Predicting hospi-

tal length of stay” section) and intensive care unit (ICU) readmission

prediction (“ICU Readmission prediction” section).

Analyzing female inclusion in clinical trials
We hypothesize that the historical imbalance between female and

male participants leads to different quantities of knowledge about

women and men in healthcare. Numerous medical topics are studied

less for women than for men, many times without correlation with

the actual gender disease prevalence.

To validate this hypothesis, we extracted UMLS medical con-

cepts (concept unique identifier [CUIs])38 from the titles and

abstracts of PubMed papers, using the MetaMap tool,39 and
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counted the number of men and women who participated in trials

with each concept. We calculate the female participant proportion

of a concept as the number of women in trials with this concept, di-

vided by the total number of participants in trials mentioning this

concept. Additionally, we extracted disease prevalence statistics for

men and women as recorded in the EHR from Maccabi. We calcu-

lated the female prevalence proportion of a disease as the proportion

of women in all patients diagnosed with the disease. The female

prevalence proportion by diagnosis in the Maccabi EHR data and

female participant proportions computed from the clinical trials

data are presented in Figure 1, and an analysis over time (2008–

2018) is shown for 3 diseases in Figure 2. We chose diseases from

across the bias range: fibromyalgia (biased, too few men in re-

search), diabetes mellitus (almost no bias), and spondylarthritis (bi-

ased, too few women in research).

Taking the gender-specific prevalence of diagnoses in the EHR

data as representative of the larger worldwide population of preva-

lence, we compare the proportion of women for topics drawn from

ClinicalTrials.gov with the EHR prevalence rates. In Figure 1,

topics on the left show a large difference in prevalence rates in the

EHR data and representation in clinical trials. We define statistical

bias as the misalignment between gender participation in clinical tri-

als on specific illnesses and the prevalence of the respective illnesses

in a population. We see significant indications of such statistical

bias. For example, 51% of Maccabi patients with liver cirrhosis are

women, but only 30% or clinical trial participants on this topic are

female. Topics on the right in Figure 1 have a large negative statisti-

cal bias; the proportion of female participants in trials is larger than

the prevalence in female patients. Fibromyalgia specifically stands

out: the prevalence in female Maccabi patients (56%) is consistent

with the recent research40 (close to 60%), while the research popula-

tion is mostly composed of women (92%).

We conclude that indeed certain topics have been studied in a

disproportion to the real-world prevalence of the disease in females.

However, reconducting previous trials with the appropriate gender

inclusion might be impractical. Excluding trials without the appro-

priate inclusion might lead to loss of useful scientific knowledge.

In this work, we suggest augmenting the accumulated knowledge to

better address the underlying bias.

Gender-sensitive embeddings
Word embeddings have been shown to be susceptible to biases in

text and to aggravate them.18,19 Thus, word embeddings trained on

clinical trial papers with different participation by men and women

are inherently biased, as shown in Rios et al.41 By training gender-

sensitive word embeddings for healthcare, we seek to address gender

enrollment bias in healthcare applications.

We present a diagram of the process in Figure 3. Our approach

includes a preprocessing method as follows. Each title and abstract

are concatenated and processed by MetaMap39 to identify UMLS

concepts.38 The range of words describing each concept is then

replaced with the CUI, as done in Beam et al.42 The rest of the text

is lowered and tokenized, and punctuations are removed. For exam-

ple, the following piece of text:

“Effects of combination lipid therapy in type 2 diabetes

mellitus.”

is transformed into:

“C1280500 of C0009429 C0023779 C0009429 in C0011860”

To create gender-sensitive embeddings, we use the number of fe-

male participants in a clinical trial abstract (available from Clinical-

Trials.gov31) to determine the relevance of this abstract, as a unit, in

the construction of a female-centric embedding. Intuitively, clinical

trials with more female participants should have more influence on

the embedding. The importance of an abstract is implemented as

upsampling the abstract in the corpus on which the embedding is

trained, thus giving the abstract more weight in the training process.

We experimented with several heuristics and optimizations to deter-

mine each abstract importance (Supplementary Appendix A and D)

and chose the one given below. We also train a baseline embedding,

which we name neutral embedding, on a corpus containing each

abstract exactly once, regardless of the number of participants in

the trial.

Figure 1. Proportion of female research participants drawn from ClinicalTrials.gov (red diamonds) vs computed prevalence of females with diagnoses in multi-

year Maccabi electronic health record data (blue circles).
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The mapping from female participants to the number of repeti-

tions is given by:

reps xð Þ ¼

0; x ¼ 0

1; 0 < x � 10

10; 10 < x � 100

20; 100 < x

8>>>>><
>>>>>:

We set a cap on the number of repetitions, to avoid giving a sin-

gle abstract too much influence on the embeddings. We experi-

mented with several other weighting policies; this policy performed

best. See Supplementary Appendix A for details.

The training procedure yields a bias-sensitive embedding set

and a baseline embedding set—2 different mappings from words to

real-numbered vectors. We make our code and embeddings publicly

available (https://github.com/shunita/gender_sensitive).

Finally, we filter only words that are CUIs and use them in our

evaluation process. In the experiments below, we used embedding

size of 40. There are 2118 concepts for which we have both versions

of embeddings and appear in our evaluation data.

RESULTS

We evaluate our gender-sensitive embedding on a comorbidity pre-

diction task, based on data from Maccabi EHR. Comorbidities are

diseases that occur together frequently. In this task, the embedding

is given as input to a model that aims to solve the task.

Next, we evaluate our embeddings on 2 tasks based on MIMIC-

III data: hospital length of stay prediction and ICU readmission pre-

diction. The embeddings are used to transform the patient’s diagno-

ses into feature vectors, which are used as input to a prediction

model. Additional implementation details on all downstream tasks

and models are available in Supplementary Appendix E.

Figure 2. Gender trends over time: Proportion of female participants in clinical trials vs female prevalence drawn from electronic health record (EHR) data over a

decade (2008–2018). The dashed blue line is the female prevalence calculated from Maccabi EHR data. The boxes/triangles represent the range from the first to

third quartiles/means of the female participation percent in clinical trial papers by years.

Figure 3. Training process of gender-sensitive embeddings.
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Comorbidity classification
Comorbidity classification is the task of predicting whether a disease

or medical condition simultaneously presents with another or others

in patients across aggregated knowledge over many patients. The

task has been widely studied,43–46 due to the increasing availability

of large-scale EHR data. While most disease associations are known,

others may still be uncovered via analysis of EHR data. For exam-

ple, in Chaganti et al,43 the authors find through EHR mining previ-

ously unknown connections between autism spectrum disorder and

glaucoma and between Alzheimer’s disease and prior inflammatory

processes. We aim to evaluate the opportunities to harness the

gender-sensitive embedding ability to improve the performance of a

comorbidity classifier: a model which detects if 2 diseases are

comorbidities.

The comorbidity binary label for our task is calculated using the

2 million patient data from Maccabi EHR. To calculate the label,

we perform a statistical test for proportion difference (z-test), com-

paring 2 proportions: the probability of a person with disease A to

be diagnosed with B, versus the probability of a person without dis-

ease A to be diagnosed with B. If A increases the chances of getting

B, and B increases the chances of getting A we consider A and B as

comorbidities and assign them a positive label. The comorbidity la-

bel can be calculated on a subset of the population. We calculated

women’s comorbidities, by counting only female patients in the

compared proportions. We filter out diseases that appear in less

than 30 patients, to maintain the statistical test validity.

We employ for the classifier a single-layer neural network with

50 neurons. Its input features are the concatenated embeddings of

the 2 diseases, and its output is binary (whether the diseases are

comorbidities).

We compared the performance of the model when given each

embedding set (gender-sensitive and neutral baseline) as input fea-

tures. We used 5-fold cross validation, calculated the metrics on

each fold, and finally averaged them. A comparison of the average

accuracy and the average area under the receiver-operator character-

istic (AUROC) curve for women’s comorbidities is shown in Table 1.

The gender-sensitive embedding performs statistically signifi-

cantly better than the neural baseline. The performance for diseases

of 3 categories (cardiovascular, autoimmune, and other commonly

misdiagnosed diseases) is presented in Table 2, along with the aver-

age proportion of female participants in clinical trials and the dis-

ease prevalence in women. Diseases where the difference between

the 2 models’ area under the curves (AUCs) was statistically signifi-

cant according to Delong’s Test47 were marked with an asterisk sign

(*). The full table is available in Supplementary Appendix C.

Out of 265 diseases with at least 10 abstract mentions, in 77

(27%) diseases the gender-sensitive model performed better; in 185

(69.8%) diseases there was no significant difference; and in only 2

(1.1%) diseases the neutral model performed better. These 2 were

Alzheimer’s disease and gastroenteritis. A particularly interesting

disease category is cardiovascular diseases, in which we saw a signif-

icantly higher AUROC in half of the diseases (7 out of 15). In the

other cardiovascular diseases, the gender-sensitive model’s AUROC

was higher, but with P-value> .05.

We also examined the performance on autoimmune diseases,48

which are commonly misdiagnosed in women.49 Our model per-

formed significantly better on comorbidities of psoriatic arthritis,

rheumatoid arthritis, and systemic lupus. In other commonly mis-

diagnosed diseases,50 the performance of the gender-sensitive model

was also higher.

Next, we compared the 2 embedding sets over disease sets with

different levels of bias (Figure 4). We define the bias as the differ-

ence between prevalence and participants. The female prevalence of

diseases is the proportion of female patients out of all patients diag-

nosed with the illnesses. The gender-sensitive embedding is consis-

tently better than the neutral embedding for all disease groups.

Additional analyses of the AUROC differences are in Supplementary

Appendix B.

As many pair-level datasets51 have relations between the train

and the test (eg, a training set might have a pair of disease (A, B) and

(B, C) and the test might have (A, C)), we repeated the experiment

for patient-level comorbidity prediction based on diagnoses history,

like the task of Folino and Pizzuti.52 Each patient’s previous diagno-

ses were aggregated by an Long Short-term Memory neural net-

work, and fed to N binary classifiers, one for each possible future

diagnosis. When averaged over diseases with participatory statistical

bias (the female participant proportion is lower in the contributing

studies than the female prevalence), the average AUC of the gender-

sensitive model on female patients was 0.68, compared to 0.66 for

the neutral model.

Predicting hospital length of stay
Next, we turn to evaluating the models on the task of predicting

hospital length of stay. In this task, the goal is to predict a patient’s

length of stay in the hospital, based on the patients’ diagnoses from

the previous admissions, primary diagnosis from the current admis-

sion, and demographic features. Estimating a patient’s length of stay

is important in hospital planning around the allocation of rooms

and resources. The predictions can also be taken as indications of se-

verity and need for different levels of care and recovery.

The features used in this prediction task were patient demo-

graphics (gender, age, ethnicity), previous diagnoses embeddings,

and primary diagnosis embedding (the first diagnosis in the admis-

sion). The embedding was done using the models evaluated as de-

scribed above. We also harnessed a set of aggregated numerical

features, including the number of previous admissions, number of

previous procedures, number of previous diagnoses, and the number

of days since last admission.

The sum of previous diagnoses was concatenated to the primary

diagnosis embedding and to the other features. The combined fea-

ture vector was fed into a 3-layered neural network.

The mean absolute error (MAE) with 95% confidence intervals

for both embeddings is shown in Figure 5. The gender-sensitive

model achieved a lower MAE (4.60 vs 4.65). Most of the error im-

provement was for the female patient visits (4.59 vs 4.66) with

lower levels of improvement for male patient visits (4.60 vs 4.64).

We further analyzed the results by age and gender (Supplementary

Appendix F), and found that, for most age groups, the gender-

sensitive embedding improved the error for all patient visits, with

larger improvements for female patient visits. The improvements

were larger for older ages, which may be attributed to more complex

Table 1. Accuracy and area under the receiver-operating character-

istic curve (AUROC) on women’s comorbidity classification task

Input features Accuracy AUROC

Neutral baseline 0.737 0.814

Gender-sensitive embedding 0.776 0.860
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relationships among multiple diseases in older ages, which are better

captured by the gender-sensitive embedding.

ICU readmission prediction
Another important task on which we evaluate the gender-sensitive

embedding is the prediction of unplanned readmission of a patient

to the ICU, at the time of their discharge. Such readmissions indicate

an unexpected deterioration in the patient’s state. Detecting such

cases in advance can improve the quality of care for the patients

based on the prospect of allocating special programs and resources

that address reasons for readmission. Studies to date have focused

on predicting the likelihood of unplanned readmissions for patients,

per the goal of informing decisions about programs aimed at reduc-

ing the likelihood of readmissions for patients predicted at being at

high risk for readmission.53 We follow Lin et al54 for the definition

of an unplanned readmission: Patients that were transferred from

the ICU to low-level wards or discharged, but within 30 days they

either returned to the ICU or died.

We use the same features as in “Predicting hospital length of

stay” section, along with all the diagnoses of the current admission.

Diagnoses are given as ICD9 codes, matched to CUI (if possible) and

then embedded using the evaluated embedding. The final feature

vector is composed of the sum of previous diagnoses vectors, the

sum of current diagnoses vectors, and the additional feature vector.

The vector is fed to a classifier (a 3-layer neural network).

The AUROC for both models can be seen in Figure 6. The

AUROC was improved for all patients, but more so for female

patients, leading to similar performance on men and women. The

gender-sensitive model achieved an AUROC of 0.686. We experi-

mented with additional features from the patient chart events table.

Adding the gender-sensitive embeddings of diagnoses to these com-

monly used features for ICU readmission increased the AUROC

from 0.68 to 0.72 for female patient visits (see Supplementary Ap-

pendix G). We deduce that adding the gender-sensitive embeddings

of current previous diagnoses can improve the results of previous

works as well.55,56

DISCUSSION

The increasing use of machine learning models in healthcare can

help reduce workload of caregivers, reduce delays, and save medical

Table 2. Area under the receiver-operating characteristic curve (AUROC) of both models on women’s comorbidity classification task for car-

diovascular (CV), autoimmune (A), and commonly misdiagnosed diseases (M)

Disease Neutral AUC Gender-sensitive AUC Female participants Female prevalence Category

Acute coronary syndrome (*) 0.81 0.91 0.32 0.32 CV

Aortic stenosis symptomatic 0.89 0.91 0.53 0.48 CV

Aortic valve insufficiency (*) 0.67 0.73 0.56 0.47 CV

Acute myocardial infarction 0.88 0.91 0.25 0.24 CV

Cardiac event 0.83 0.88 0.37 0.33 CV

Aortic valve stenosis 0.82 0.85 0.45 0.48 CV

Atrial fibrillation 0.82 0.84 0.37 0.46 CV

Cardiovascular diseases (*) 0.75 0.84 0.43 0.30 CV

Coronary occlusion 0.87 0.87 0.29 0.22 CV

Heart failure w. normal ejection fraction (*) 0.82 0.89 0.57 0.52 CV

Chronic heart failure 0.80 0.84 0.27 0.44 CV

Cardiac arrest (*) 0.79 0.87 0.46 0.38 CV

Heart failure, systolic (*) 0.86 0.9 0.31 0.33 CV

Acute heart failure (*) 0.85 0.90 0.35 0.44 CV

Arthritis, psoriatic (*) 0.76 0.84 0.49 0.51 A

Psoriasis 0.72 0.80 0.38 0.50 A

Inflammatory bowel diseases 0.82 0.83 0.48 0.53 A

Rheumatoid arthritis (*) 0.74 0.86 0.77 0.76 A

Lupus erythematosus, systemic (*) 0.59 0.80 0.88 0.83 A

Lupus erythematosus 0.79 0.78 0.90 0.83 A

Multiple sclerosis 0.61 0.75 0.69 0.67 A

Polycystic ovary syndrome 0.46 0.58 0.97 1 M

Sleep apnea syndromes 0.84 0.89 0.39 0.27 M

Fibromyalgia 0.70 0.71 0.92 0.57 M

Irritable bowel syndrome 0.75 0.74 0.75 0.64 M

Sleep apnea, obstructive (*) 0.75 0.85 0.38 0.22 M

Note. Diseases with an asterisk sign are ones where the difference in AUROC between the 2 models is statistically significant (P-value< .05 in Delong test47).

Figure 4. Average AUROC in the comorbidity classification task for the bias

aware model and neutral model, analyzed by bias (the difference between fe-

male prevalence percent and female participant percent). Bins with less than

10 diseases are not shown.
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costs. But the corpora used to train such models contain decades-

worth of underrepresentation bias.

We analyzed the female inclusion in a decade of clinical trials

(2008–2018) and found gaps in research in both directions. Some

topics have not been researched on enough women: liver diseases,

anemia and more. In other topics, like fibromyalgia, there are more

female participants than the actual prevalence.

We describe a novel approach to use clinical trial metadata to re-

duce the bias in machine learning models trained on them. We have

designed a data augmentation method that enables the training of

gender-sensitive word embeddings. Since our method is based on re-

weighting of corpus samples, it can be applied easily to any embed-

ding algorithm. We validated our method on 3 clinical prediction

tasks, that were created with EHR data from 2 datasets.

In the comorbidity classification task, our model achieved an

AUC of 0.86 compared to 0.81 achieved by word embeddings with-

out data augmentation. For nearly all diseases, use of the gender-

sensitive embedding either leads to either better results or to results

competitive with the neutral baseline. We specifically examined car-

diovascular diseases, autoimmune diseases and commonly misdiag-

nosed diseases and found an increase in the AUC in nearly all

diseases of these categories. This suggests that the data augmenta-

tion method can lead to higher performance in health downstream

tasks based on aggregated data from many female patients.

In both clinical prediction tasks based on the MIMIC-III data,

the gender-sensitive embeddings improved the performance of the

prediction model overall, but the largest improvement was for fe-

male patients. In the ICU readmission prediction task, the neutral

baseline performed worse on female patients than on male patients;

the gender-sensitive embeddings equalized the performance on both

genders, by improving the performance on female patients.

We note that our study has several limitations. First, the use of

disease prevalence data from Maccabi Healthcare may not be repre-

sentative of worldwide disease prevalence, and suggest that the co-

morbidity experiments should be repeated with other EHR datasets.

Second, the single binary gender variable available in both clinical

trials and EHR datasets inherently limits our method to a binary

concept. In ClinicalTrials.gov gender is defined as “a person’s classi-

fication as female or male based on biological distinctions.” In the

MIMIC-III dataset, gender is defined as “the genotypical sex of the

patient.” These narrow definitions are at the foundation of health

informatics, and they limit healthcare research per blindness to

more comprehensive notions of gender and the potential influences

of gender in health and wellness. We argue that dataset designers

should modify these definitions to include broader notions of gen-

ders. Third, we restricted our implementation and evaluation to gen-

der bias in clinical trials data, but the method can be tested for

overcoming other types of bias in trials such as race and age.

Other than single source biases, another issue is intersectionality:

biases that stem from the combination of 2 or more attributes, such

as race and gender together.57,58 Future work should explore adjust-

ing the methods we have presented to analyze and mitigate intersec-

tional biases. A possible method of doing so is to train a designated

embedding set for each underrepresented group defined by an inter-

section of properties, for example, for each combination of race and

gender. However, the presence of individuals of an intersectional

group in clinical trials may be even lower than each single-attribute

group (eg, there are fewer black women in clinical trials than women

in general), leading to the availability of insufficient data to train an

embedding set for each group. However, it is possible to train a spe-

cialized embedding for each population group (eg, for each gender

and for each race), and to combine these embeddings to achieve a

representation of each intersectional group.

Our work gives rise to several applications and future research

directions. First, the performance difference between gender-

sensitive and neutral word embeddings can be used to highlight dis-

eases that should be researched more for genders poorly represented

in research, typically women. As such, it can be used in a system

that periodically surveys the medical research automatically and

highlights research gaps.

Second, the improved performance in the tasks studied, includ-

ing for comorbidity classification, suggests a possible usage of word

embeddings as part of a recommendation system that detects risk

factors and suggests diseases that a patient is at risk for, as well as

for hospital stay prediction, and ICU readmissions.

CONCLUSION

For decades, clinical trials had poor representation of women partic-

ipants. We have introduced a method for leveraging content from

gender-biased clinical trials to build language-based representations

for clinical classification and prediction tasks in women. We pro-

posed and evaluated a method aimed at addressing the historical

gender imbalance in clinical trials to build gender-sensitive word2-

vec word embeddings. The method leverages content about clinical

trials along with metadata about the degree of female representation

in studies. The procedure assigns a higher weight to the content

Figure 5. Mean absolute error (MAE) in prediction of length of hospital stay

for the gender-sensitive embedding and the neutral baseline. The leftmost

column represents the overall MAE for all visits in the test set, while the other

2 columns represent the MAE over female patient visits and male patient vis-

its. Error bars represent a 95% confidence interval.

Figure 6. AUROC in ICU readmission prediction for the gender-sensitive em-

bedding and the neutral baseline. The leftmost column represents the overall

AUROC for all visits in the test set, while the other 2 columns represent the

AUROC over female patient visits and male patient visits.
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from clinical trials that included more women. We demonstrated

that use of the gender-sensitive embeddings achieves better results

than the baseline, in a global clinical prediction task and 3 local (pa-

tient-level) clinical prediction tasks based on 2 EHR datasets. To

our knowledge, this work represents the first effort to incorporate

clinical trial metadata about the representation of participants in

clinical trials to train word embeddings. We hope the work will

stimulate follow-up effort, including the use of other available meta-

data about representation of patients in clinical trials, including pa-

tient race, ethnicity, and age, and about the type and quality of

research as measured by various metrics and scales.59
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