
Restart Policies with Dependence among Runs:

A Dynamic Programming Approach

Yongshao Ruan1, Eric Horvitz2, Henry Kautz1

1 University of Washington, Seattle WA 98195, USA,
fruan,kautzg@cs.washington.edu

2 Microsoft Research, Redmond WA 98052, USA
horvitz@microsoft.com

Abstract. The time required for a backtracking search procedure to
solve a problem can be reduced by employing randomized restart pro-
cedures. To date, researchers designing restart policies have relied on
the simplifying assumption that runs are probabilistically independent
from one another. We relax the assumption of independence among runs
and address the challenge of identifying an optimal restart policy for the
case of dependent runs. We show how o�ine dynamic programming can
be used to generate an ideal restart policy, and how the policy can be
used in conjunction with real-time observations to control the timing of
restarts. We present results of experiments on applying the methods to
create ideal restart policies for several challenging problems using two
di�erent solvers.

1 Introduction

Combinatorial search algorithms in many domains exhibit high variance in run-
ning time over �xed sets of problems [23, 6, 19, 13, 7, 24]. In some cases, the prob-
ability distribution for the running time of a search algorithm over a problem
set is heavy-tailed, having in�nite mean and variance [8, 10, 9]. Investigators have
pursued an understanding of the basis for such great variation in run time, and
have sought to exploit the uncertainty in execution time to develop more pre-
dictable and eÆcient procedures [3, 12].

Several investigators have explored the value of randomized restarts [11]. In
this area of work, randomness is overlayed on the branching heuristic of a system-
atic search algorithm. If the search algorithm does not terminate within some
number of backtracks, referred to as a cuto�, the run is halted and the algo-
rithm is restarted with a new random seed. The randomized restart method has
been demonstrated to reduce the total execution time on a wide variety of prob-
lems in scheduling, theorem-proving, circuit synthesis, planning, and hardware
veri�cation [22].

In Horvitz et al. (2001) [14], we introduced a general paradigm for building
probabilistic models that predict a search algorithm's performance on a given
problem instance, on the basis of the algorithm's behavior during the �rst few
search steps. We asserted that such Bayesian models provide a foundation for



2

work on speed-up learning and control of problem solvers. In other related work,
in Kautz et al. (2002) [17], we showed that predictive models could be used to
design superior dynamic restart strategies for randomized problem solvers, for
the case where runs are probabilistically independent. In this paper, we extend
these results to the more general and more complex situation where runs are
probabilistically dependent, where each run can provide an update about the
nature of the probability distribution that generated the problem instance.

We shall �rst review some details of prior work and de�ne the problem of
dynamic restarts with dependencies. We show that the optimal restart policy
for the dependent case can be modeled as a dynamic programming (DP) prob-
lem. We present a method centering on the use of o�ine DP to generate an
ideal restart policy. Then, we show how observations can be incorporated into
the restart policy. Finally, we illustrate the eÆcacy of the restart policies with
experiments on several representative problems.

2 Research on Restart Policies

The basis for using randomized restarts is straightforward: the longer a back-
tracking search algorithm runs without �nding a solution, the more likely it is
that the algorithm is exploring a barren part of the search space, rather than
branching early on states of critical variables that will be necessary for a solu-
tion. The designers of restart policies must grapple with minimization of total
run time given a tradeo�; as the cuto� time is reduced, the probability that any
particular run will reach a solution is diminished, so runs become shorter but
more numerous.

Previous theoretical work on the problem of determining an ideal cuto� has
made two assumptions: �rst, that the only feasible observation is the length of
a run; and second, that the runs are independent. Under these conditions Luby
et al. [21] described provably optimal restart policies. In the case of complete
knowledge of the distribution, the optimal policy is the �xed cuto� that min-
imizes E(Tc), the expected time to solution restarting every c backtracks. In
the case of no knowledge of the distribution, Luby et al. further showed that a
universal schedule of cuto� values of the form

1; 1; 2; 1; 1; 2; 4; :::

gives an expected time to solution that is within a log factor of that given by
the optimal �xed cuto�, and that no other universal schedule is better by more
than a constant factor.

Although the results of Luby et al. were taken by many in the research
community to have settled all open issues on restart strategies, many real-life
scenarios violate both assumptions. In Horvitz et al. [14] and Kautz et al. [17]
we demonstrated that features other than run time can be used in the restart
control policy of backtrack solvers. We introduced a framework for constructing
Bayesian models that can predict the run time of problem solvers, and showed
that observations of various features capturing the state of the solver during the



3

�rst few steps of a run could be fused to predict the length of a run with a
useful degree of accuracy. We described several approaches to apply the obser-
vation into restart control policies and showed that the dynamic restart policies
with observations beat the static optimal policy of Luby et al. by 40% to 65%.
However, these papers retained the limiting assumption that runs were proba-
bilistically independent.

The assumption that runs are independent can be violated in a number of
settings. Consider the case where we have knowledge of the existence of several
di�erent probability distributions over run time, D1; D2; :::. A problem instance
is drawn from one of the distributions based on prior probabilities and each run
is performed on that same instance. In this setting, observations about the time
exhibited until a restart of one or more prior runs of the same instance provides a
probabilistic update about the probability distribution over run time of current
and future runs.

It is easy to see how restart policies for independent and dependent runs
can di�er. Consider the simple case of distributions based on point probabilities.
Suppose in the independent case a run always ends in 10 or 100 steps with equal
probability: P (ti = 10) = P (ti = 100) = 0:5. In this case the optimal policy is
to always restart after 10 steps if the problem is not solved. On the other hand,
consider the dependent case where in D1 all runs take 10 steps and in D2 all
runs take 100 steps, and a �xed instance is chosen from one of the distributions
with equal probability. Then the optimal policy is to run with a cuto� � 100. If
the problem is not solved after 10 steps then we know the problem requires 100
steps, so a solver should continue. Any �xed cuto� less than 100 gives a non-
zero probability of never solving the problem|and thus an in�nite expected run
time.

Our paper addresses the challenge of designing restart policies for dependent
runs. Our speci�c contributions include:

{ Modeling the optimal restart policy for dependent runs as a DP problem
{ Speci�cation of di�erent predictive models and showing how they are used
in dynamic restart policies

{ Evaluating the optimal restart policies empirically with and without run-
time observations and comparing these results with the best �xed-cuto�
policies and the universal restart policy of Luby et al..

3 Dependent restarts without observations

To simplify the presentation, we will focus on dependent runs for the case of two
run-time distributions (RTDs), which we shall denote as source distributions D1

and D2. The results can be extended in a straightforward manner to the case
of n distributions. At the outset of problem solving, one of the distributions is
chosen according to a given prior probability, but the choice is not revealed to the
solver. For each run we specify a cuto� t, and a sample is drawn from the chosen
RTD. If the sample's run time is less than t the problem is solved; otherwise, we
perform another run with a new sample from the same distribution. Thus, with



4

each unsuccessful run, we gain additional information about the distribution
that was initially chosen.

This analysis characterizes several problem-solving scenarios, including the
scenarios where (i) each Di is the RTD for a single instance under a randomized
solver; (ii) each Di corresponds to an ensemble of instances with similar RTD's;
or (iii) each Di is the RTD of a heterogeneous ensemble, and the solver gets a
new problem instance for each run. Another scenario of interest is where each
Di corresponds to a heterogeneous ensemble of instances, and the same problem
instance is used for each run. The analysis of this single-instance scenario requires
additional mathematical machinery that relates the RTD of an ensemble to the
RTD's of its individual instances under a randomized solver, as we will explain
in a forthcoming paper.

If we had perfect knowledge of the distribution that generated the instance,
the problem would collapse to the independent case described by Luby et al.

Let us consider the case where we are uncertain about the source distribution.
Our goal is to �nd the optimal policy (t1; t2; :::), where tk is the cuto� for k-
th run, such that the total number of steps to a solution is minimized. After
each unsuccessful run, the solver's beliefs about the source distribution should
be updated. We shall �rst consider the situation where we are limited solely
to evidence about the time spent on prior runs. We formulate the problem of
�nding the optimal restart policy for the dependent case as a Markov decision
process (MDP) ([15]).

Formally, the dependent restart problem can be described as a Markov de-
cision process as follows: Let di be the prior probability of a run being chosen
from distribution Di, pi(t) the probability that a run will be selected from Di

stopping exactly at t, and qi(t) =
P

t0�t pi(t
0) the cumulative function of pi(t),

where i = 1; 2. We will always assume that pi is non-trivial in the sense that
pi(inf) < 1. Each state is a tuple of (d1; d2) and the set of actions for all states
is the set of all possible cuto�s. Given an action t (i.e., cuto� = t) and state
S = (d1; d2), the next possible state is either that the problem is solved (the ter-
mination state), or S0 = (d01; d

0
2), where d

0
1 and d

0
2 are the updated probabilities.

Once the solver reaches the termination state, denoted S0 = (0; 0), it remains
there at no further cost. An optimal restart control policy is one whose expected

cost to reach the termination state is minimum.

Let T denote the event that a run has not found a solution in the cuto� t,
and Di denote the event that the instance is from distribution Di, where i = 1; 2.
In this analysis, we are only considering the prior run times in updating d1 and
d2. So we have

d0i =
P (T;Di)P

j=1;2 P (T;Dj)

=
P (Di)P (T jDi)P

j=1;2 P (Dj)P (T jDj)

=
di(1� qi(t))P

j=1;2 dj(1� qj(t))



5

where i = 1; 2.
The immediate cost of setting the cuto� to be t at state S (i.e., the expected

length of the run from state S with a cuto� t), denoted R(S; t), is

R(S; t) =
X

i=1;2

di(
X

t0�t

t0pi(t
0) + t(1� qi(t))

=
X

i=1;2

di(t�
X

t0<t

qi(t
0)) (1)

Thus, the next state S0 = (d01; d
0
2) depends only on the previous state S =

(d1; d2) and the corresponding cuto� t. The same is true for the immediate
cost R. So the state space satis�es the Markov property. With this, �nding the
optimal restart policy for the dependent runs is an MDP.

Given a cuto� t, the transition probabilities from S to S0 and the termination
state S0 are

P (S0jS; t) =
X

i=1;2

di(1� qi(t))

P (S0jS; t) =
X

i=1;2

diqi(t)

The transition probability from S to any state other than S0 and S0 is 0.
The optimal expected solution time from state S = (d1; d2) is the optimized

sum of the immediate cost R(S; t) and the optimal expected solution time of
the two possible future states, denoted V �(S), which is given by the following
Bellman equation:

V �(S) = min
t
fR(S; t) + P (S0jS; t)V �(S0)

+ P (S0jS; t)V
�(S0)g

= min
t
fR(S; t) + P (S0jS; t)V �(S0)g

= min
t
f
X

i=1;2

di(t�
X

t<t

qi(t
0))

+
X

i=1;2

di(1� qi(t))V
�(S0)g

where we use the relation of V �(S0) = 0 and Equation 1.
V �(S) can be computed using DP. We have experimented with both policy

iteration and value iteration for DP. A restart policy is said to be proper if,
for each state S = (d1; d2), we only select a cuto� t such that P (S0jS; t) > 0,
i.e., each state has a positive transition probability to the termination state.
Both policy iteration and value iteration are proved to converge to the ideal
optimal value in theory[2], with the assumption of proper restart policies. In
our studies, we have found that policy iteration converges faster than value
iteration. Thus, we choose policy iteration for the experiments presented below.



6

Another practical problem is that the state space is continuous and we thus
potentially must solve the problem for an in�nite state space. For computational
tractability, we transform the continuous space into a discrete state space and
then apply �nite-state DP methods. We shall review the experiments for the
case of dependent runs without observation in Section 5. Before reviewing these
results, we shall explore the case where we consider observations gathered during
run time, in addition to the time taken by previous runs.

4 Dependent restarts with observations

Beyond run time, other evidence about the behavior of a solver may be valuable
for updating beliefs about the source distribution. Indeed, watching a trace or
visualization of a backtracking search engine in action can provide updates about
run time. As mentioned above, our earlier work provides a general framework
for constructing Bayesian models to predict the run time of problem solvers, and
shows how probabilistic models can be used to create optimal dynamic restart
policies for the case of independent runs [14, 17]. We now consider situations
where the system can make observations that update beliefs about the current
Di.

Let us explore the case where an evidential feature F of the solver state is
observed during a run. F can be taken to be a function of the initial trace of the
solver, as calculated by a decision tree over low-level variables. F may be binary-
valued|providing, for example, an update about whether the current run will
last at least 10,000 steps or not. F can also be multi-valued; for example, the
feature may indicate which leaf of predictive decision tree model should be used
to infer the RTD associated with a set of features observed during the initial
portion of the run. For simplicity of exposition, we shall consider the case where
F is binary-valued, i.e., 0 or 1.

Our analysis makes no assumptions about the meaning of F . In practice, we
need to choose an F that helps us choose a better cuto� value for the run. One
natural choice for F is the output of a decision tree that is trained to discriminate
between instances from D1 and D2. We call such an F a distribution predictor.
In the experiments below, we use a SAT/UNSAT distribution predictor which
discriminates between satis�able and unsatis�able instances. Another natural
choice is to base F on a decision tree trained to discriminate \short" (less than
median run time) verses \long" (greater than median run time) runs from the
prior-weighted union of D1 and D2. We call such an F a run-time predictor.
Intuitively, a distribution predictor provides us with probabilistic information
that can be used to tune the cuto� to be good for the predicted distribution,
while a run-time predictor would allow us to discard runs that are predicted to
be long. However, it is important to understand that the dynamic programming
procedure for calculating the optimal sequence of cuto� values does not rely
on the explicit semantics of the predictive models: it simply determines the
optimal cuto�s for any speci�ed predictor. In Section 5, we compare the use of
SAT/USAT distribution and run-time predictors on a benchmark test suite.



7

Thus, in addition to the run-time evidence, we now include information about
the observation of F , which we include in the extended de�nition of a state. The
extended state can now be described as (d1; d2; F ), where d1; d2 are the same as
those described in previous section. We de�ne the transition probability, state
transition, and the corresponding cost as follows: Besides T and Di de�ned
above, let Fn denote the feature observed at nth run, where Fn can be 0 or 1.

Before we can derive the transition probabilities and state transitions, we
must compute the interim probability P (Di; Fn+1jFn; T ). The interim probability
is the probability that the instance is generated by distribution Di and Fn+1 is
observed in the (n+ 1)-th run, given that the n-th run had observation Fn and
there is no solution for t steps.

P (Di; Fn+1jFn; T ) = P (Fn+1jFn; T;Di)P (DijFn; T )

We obtain the �rst part of the right side of the above formula (the probability
of observing Fn+1 in the next run) by conditioning on the assumptions that the
instance is from distribution Di, Fn is observed in the n-th run, and no solution
is found within t steps:

P (Fn+1jFn; T;Di) = P (Fn+1jDi)

We assert that the probability of observation F is independent of the previous
observations and the selected cuto�, conditioned on the assumption that the
instance is drawn from Di.

The second part of the right side of the formula, i.e., P (D = DijFn; T ), is
the probability that the instance is from distribution Di, assuming that Fn is
observed and no solution is found within t steps.

P (D = DijFn; T ) =
P (T jFn; Di)P (DijFn)

P (T jFn)

=
diP (T jFn; Di)

P (T jFn)

Combining the two parts, we have

P (Di; Fn+1jFn; T ) =
diP (T jFn; Di)P (Fn+1jDi)

P (T jFn)

We note that P (T jFn; Di), P (Fn+1jDi), and P (T jFn) can be derived from the
data.

Thus, the transition probability from state Sn = (d1; d2; Fn) with action t to
Sn+1 = (d01; d

0
2; Fn+1) is

P (Sn+1jSn; T )

= P (Fn+1jFn; T )

=
X

i=1;2

P (Di; Fn+1jFn; T )

=

P
i=1;2 diP (T jFn; Di)P (Fn+1jDi)

P (T jFn)
(2)



8

For the next state Sn+1 = (d01; d
0
2; Fn+1), we have

d0i = P (DijFn; T; Fn+1)

=
P (Di; Fn+1jFn; T )

P (Fn+1jFn; T )

=
diP (T jFn; Di)P (Fn+1jDi)P

i=1;2 diP (T jFn; Di)P (Fn+1jDi)

With a binary-valued F , from state Sn = (d1; d2; Fn) with cuto� = t, we
know that a solver will be in one and only one of the three states: a solution is
found and the solver will be in the termination state S0, no solution is found but
F is true, or no solution is found and F is false. Let S0

n+1 = (d01; d
0
2; Fn+1 = 1)

and S
00

n+1 = (d001; d
00

2 ; Fn+1 = 0) denote the last two states respectively. The
transition probability from Sn to any other states is 0.

The immediate cost R(Sn; t), i.e., the expected length of the nth run, as-
sociated with setting the cuto� to t at state Sn, is given by Equation 1. Sim-
ilar to no-observation analysis, the optimal expected solution time from state
Sn = (d1; d2; Fn), denoted V �(Sn), is the optimized sum of the immediate cost
R(Sn; t) plus the optimal expected solution time of the three possible future
states, which is given by the following Bellman equation:

V �(Sn)

= min
t
fR(Sn; t) + P (S0jSn; t)V

�(S0)

+ P (S0
n+1jSn; t)V

�(S0
n+1)

+ P (S00
n+1jSn; t)V

�(S
00

n+1)g

= min
t
fR(Sn; t) + P (S0

n+1jSn; t)V
�(S0

n+1)

+ P (S00
n+1jSn; t)V

�(S
00

n+1)g

= min
t
fR(Sn; t) + P (T )(P (S0

n+1jSn; T )V
�(S0

n+1)

+ P (S
00

n+1jSn; T )V
�(S

00

n+1))g

= min
t
f
X

i=1;2

di(t�
X

t0<t

qi(t
0))

+ (1�
X

i=1;2

diqi(t))(P (S
0
n+1jSn; T )V

�(S0
n+1)

+ P (S
00

n+1jSn; T )V
�(S

00

n+1))g

where P (S0
n+1jSn; T ) and P (S

00

n+1jSn; T ) can be computed by Equation 2.

Similar to the case with no observation, the dynamic dependent restart policy
for the case with run-time observations can be computed with the use of DP as
described in Section 3.



9

5 Experiments and Results

We performed a set of experiments to explore our approach to �nding optimal
restart policies with and without observations. We investigated the dependent
restart policies for the multiple-instance problem-solving scenario described as
Case iii in Section 3. For the multiple-instance situation, we choose an instance
from Di; i = 1; 2 according to prior probabilities. Then, for each run, a new
instance from the same distribution Di is randomly selected. We can draw and
attempt to solve as many instances as we would like, but the goal is to solve one
instance as soon as possible.

We considered as benchmark domains the quasigroup completion problem [7,
1, 18] and the graph coloring problem. Experiments performed in earlier work by
Horvitz et al. [14] only considered satis�able problems. In the experiments per-
formed for this paper, we considered distributions containing unsatis�able as well
as satis�able problem instances. As described in Section 3, we investigated de-
pendent restart policies for the multiple-instance problem-solving scenario (that
is, a heterogeneous ensemble with a new instance drawn for each run). As we
noted, a forthcoming paper will explore the more complex case of a �xed instance
drawn from a heterogeneous ensemble.

5.1 Background on Benchmark Domains

A quasigroup is an ordered pair (L; �), where L is a set and (�) is a binary
operation on L such that the equations a � x = b and y � a = b are uniquely
solvable for every pair of elements a; b in L. The order N of the quasigroup is
the cardinality of the set L. An incomplete or partial Latin Square P is a partially
�lled N by N table such that no symbol occurs twice in a row or a column. The
Quasigroup Completion Problem (QCP) is the problem of determining whether
the remaining entries of the table can be �lled in such a way that we obtain a
complete Latin Square. For our studies, we generated a total of 10,000 instances,
of which 6,062 were satis�able. The instances are of order 30 with 337 unassigned
variables or \holes."

The second problem domain we explored is solving propositional satis�ability
(SAT) encodings of the Graph Coloring Problem (GCP). Graph coloring prob-
lem is a well-known combinatorial problem from graph theory. Given a graph
G = (V;E), where V=fv1; v2; :::; vng is the set of vertices and E the set of edges
connecting the vertices, we seek to �nd a coloring C : V ! N , such that con-
nected vertices always have di�erent colors. The challenge is to decide whether
a coloring of the given graph exists for a particular number of colors.

We use the following strategy for encoding graph coloring problem instances
into SAT: Each assignment of a color to a single vertex is represented by a
propositional variable; each coloring constraint (edge of the graph) is represented
by a set of clauses ensuring that the corresponding vertices have di�erent colors.
Two additional sets of clauses ensure that valid SAT assignments assign exactly
one color to each vertex. The instances used in our studies are generated using
Culberson's at graph generator [5]. The challenge is to decide whether the



10

instances are 3-colorable. The instances contain 5,000 satis�able instances and
5,000 unsatis�able instances. The instances are generated in such a way that
all 3-colorable instances are 2-uncolorable and all 3-uncolorable instances are
4-colorable.

As a third domain, we explored a planning problem in the logistics domain.
Kautz and Selman [16] showed that propositional SAT encodings of STRIPS-
style planning problems could be eÆciently solved by SAT engines. The logis-
tics domain involves moving packages on trucks and airplanes among locations
in di�erent cities. In the logistics domain, a state is a particular con�guration
of packages and vehicles. We generated instances with 5 cities, 15 packages, 2
planes, and 1 truck per city. We generated a total of 7,900 instances, where 3,618
of the instances were satis�able. To decrease the variance among instances, all
of the satis�able instances can be solved with 12 parallel steps but cannot be
solved with 11 steps. All of the unsatis�able instances cannot be solved with 12
steps but can be solved with 13 steps.

5.2 Learning Predictive Models

We used the Satz-Rand [11] randomized backtracking search engine for the prob-
lems encoded as SAT. Satz-Rand is a randomized version of the Satz system of
Li and Anbulagan [20]. For QCP problems, we experimented with a specialized
randomized CSP solver built using the ILOG constraint programming library.

We implemented the methods described by Horvitz et al. [14] to learn pre-
dictors for run time based on observations (the feature F described in Section
4). The solvers were instrumented so that low-level observational variables could
be collected over an observational horizon of up to 100 solver choice points. (A
Choice point is a state in the backtracking search procedure where the algorithm
makes a variable assignment heuristically, rather than making an assignment
that is forced via propagation of previously set values. Types of value propaga-
tion include unit propagation, backtracking, lookahead, and forward-checking.
We employed Bayesian learning procedures developed by Chickering, Hecker-
man, and Meek [4] to induce predictors in the form of decision trees built from
the summary statistics of the low-level variables, from training sets generated
from approximately 10,000 runs. As mentioned in Section 4, we experimented
with two kinds of predictors: SAT/UNSAT distribution predictors, classifying
an instance as a satis�able or unsatis�able instance, and run-time predictors,
classifying a run as short or long, depending on whether the run time was less
than or greater than the median time for the training set. Details about the
procedure for learning predictive models are described in [17].

5.3 Comparing Policies for Dynamic Dependent Restarts

As described earlier, the optimal restart policy for dependent runs can be con-
structed o�ine by using policy iteration for DP, where we transform the contin-
uous and in�nite state space into a discrete state space and then apply �nite-
state DP methods. For all of the experiments, we quantitized the search space



11

uniformly into 10,000 segments, taking into consideration the tradeo� between
computational eÆciency and accuracy. Policy construction via DP with policy
iteration required about one hour on a Pentium-800 machine with 1 gigabyte of
memory.

To characterize the improvements associated with the dynamic dependent
restart policies, we ran comparative experiments with a �xed cuto� restart policy,
where the same cuto� is used for every run. The optimal �xed cuto� restart
policy selects the �xed cuto� which minimizes the expected solution time:3

min
t

di(t�
P

t0<t qi(t
0))

qi(t)

Beyond the case for the universal restart policy of Luby et al.4, we con-
structed optimal restart policies from training data and tested the policies on
test data that had not been used for training. Results comparing the optimal
restart policy of the two predictive models and the optimal restart policy without
observation with the best �xed cuto� restart policy are shown in Table 1. For
the problem domains studied, we found that the expected run time of both of
the dynamic restart policies with observation are lower than that of the optimal
dynamic restart policy without observations. We attribute the improvement in
solution time, ranging from about 10% to 30% for the domains, to e�ectively
harnessing the predictive models for di�erentiating runs. For all of the problems,
we found that the run-time predictive model yields faster solution times than
the SAT/UNSAT distribution predictive model. We believe that this is based
in di�erentiating short runs from long runs, which endows the solver with an
ability to avoid expending time on non-promising long runs.

QCP Graph Coloring Planning
Restart Policy ERT Improve-

ment(%)
ERT Improve-

ment(%)
ERT Improve-

ment(%)

Optimal, no predictor 33,895 86.8 45,960 87.4 25,948 79.5

Optimal, run-time 26,423 89.7 31,012 91.5 18,418 85.4

Optimal, distribution 26,564 89.6 36,272 90.0 23,724 81.2

Best �xed cuto� 33,926 86.8 48,276 86.7 26,058 79.4

Luby et al.universal 257,363 0 363,626 0 126,383 0

Table 1. Comparative results of optimal policies with and without observation with the
best �xed cuto� and Luby et al.'s universal restart policy, where ERT is the expected
run time (choice points) and improvements are measured over Luby et al.'s universal
policy.

3 Note that the cuto� is usually di�erent from the optimal cuto�s for distributions D1

and D2.
4 Luby et al.'s universal restart policy does not change from distribution to distribu-
tion.



12

6 Summary and Directions

We described the challenge of relaxing the assumption of independence in ran-
domized restart procedures for backtracking search. We de�ned the dynamic
dependent restart problem and showed how we can employ dynamic program-
ming in o�ine procedures to generate ideal real-time restart policies. We �rst
explored the case where a solver only considers information about the execu-
tion time of previous runs and then extended the analysis to include evidence
about problem-solving behavior observed during runs. Finally, we presented the
results of experiments in three domains, including quasigroup completion, graph
coloring, and logistics-planning problems.

We are pursuing several extensions to the results presented here. Our ongoing
work includes the development of dynamic dependent restart procedures for
the single-instance scenario. In this setting, we seek to relate the RTD of an
ensemble to the RTD's of its individual instances under a randomized solver.
We are also studying the generalization of the methods to scenarios that make
weaker assumptions about the nature of the underlying RTD. As part of this
work, we are exploring the use of methods from reinforcement learning to infer
the underlying distribution from previous search trajectories.

We believe that there is great opportunity in continuing to take a Bayesian
perspective in tackling combinatorial problems, where we develop machinery
and methods that allows solvers to be believers that take into consideration ev-
idential observations about problem solving, and that can consider probabilistic
dependencies among multiple solving sessions.

References

1. Dimitris Achlioptas, Carla P. Gomes, Henry A. Kautz, and Bart Selman. Gener-
ating satis�able problem instances. In AAAI/IAAI, pages 256{261, 2000.

2. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-
ti�c, 1996.

3. Hubie Chen, Carla Gomes, and Bart Selman. Formal models of heavy-tailed be-
havior in combinatorial search. Lecture Notes in Computer Science, 2239:408{??,
2001.

4. David Maxwell Chickering, David Heckerman, and Christopher Meek. A Bayesian
approach to learning Bayesian networks with local structure. In Proceedings of the
Thirteenth Conference On Uncertainty in Arti�cial Intelligence (UAI-97), pages
80{89, Providence, RI, 1997. Morgan Kaufman Publishers.

5. Joseph C. Culberson and Feng Luo. Exploring the k-colorable landscape with
iterated greedy. In David S. Johnson and Michael A. Trick, editors, Dimacs Series
in Discrete Mathematics and Theoretical Computer Science, Vol. 36, pages 245{
284, 1996.

6. I. Gent and T. Walsh. Easy Problems are Sometimes Hard. Arti�cial Intelligence,
70:335{345, 1993.



13

7. Carla P. Gomes and Bart Selman. Problem Structure in the Presence of Per-
turbations. In Proceedings of the Fourteenth National Conference on Arti�cial
Intelligence (AAAI-97), pages 221{227, New Providence, RI, 1997. AAAI Press.

8. Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed Distributions in
Combinatorial Search. In Gert Smolka, editor, Principles and practice of Constraint
Programming (CP97) Lecture Notes in Computer Science, pages 121{135, Linz,
Austria., 1997. Springer-Verlag.

9. Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phe-
nomena in satis�ability and constraint satisfaction problems. J. of Automated
Reasoning, 24(1{2):67{100, 2000.

10. Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial Search
Through Randomization. In Proceedings of the Fifteenth National Conference on
Arti�cial Intelligence (AAAI-98), pages 431{438, New Providence, RI, 1998. AAAI
Press.

11. Carla P. Gomes, Bart Selman, and Henry A. Kautz. Boosting combinatorial search
through randomization. In AAAI/IAAI, pages 431{437, 1998.

12. Aaai-2000 workshop on leveraging probability and uncertainty in computation,
2000.

13. T. Hogg, B. Huberman, and C. Williams (Eds.). Phase Transitions and Complexity
(Special Issue). Arti�cial Intelligence, 81(1{2), 1996.

14. Eric Horvitz, Yongshao Ruan, Carla Gomes, Henry Kautz, Bart Selman, and Max
Chickering. A Bayesian approach to tackling hard computational problems. In
Proceedings the 17th Conference on Uncertainty in Arti�cial Intelligence (UAI-
2001), pages 235{244, Seattle, USA, 2001.

15. R.A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
16. H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic,

and stochastic search. In Proceedings of the Thirteenth National Conference on
Arti�cial Intelligence (AAAI-96), pages 1188{1194, Portland, OR, 1996. AAAI
Press.

17. Henry Kautz, Eric Horvitz, Yongshao Ruan, Bart Selman, and Carla Gomes. Dy-
namic randomized restarts: Optimal restart policies with observation. To appear
in AAAI, 2002.

18. Henry Kautz, Yongshao Ruan, D. Achlioptas, Carla P. Gomes, Bart Selman, and
Mark Stickel. Balance and �ltering in structured satis�able problems. In Pro-
ceedings of the Sixteenth International Joint Conference on Arti�cial Intelligence
(IJCAI-01), pages 351{358, 2001.

19. S. Kirkpatrick and B. Selman. Critical behavior in the satis�ability of random
Boolean expressions. Science, 264:1297{1301, 1994.

20. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satis�abil-
ity problems. In Proceedings of the International Joint Conference on Arti�cial
Intelligence, pages 366{371. AAAI Pess, 1997.

21. M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas algorithms.
Information Process. Letters, pages 173{180, 1993.

22. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Cha�: Engineering an eÆcient SAT solver. In Design Automation Confer-
ence, pages 530{535, 2001.

23. B. Selman, H. Kautz, and B. Cohen. Local search strategies for satis�ability testing.
In D. Johnson and M. Trick, editors, Dimacs Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 26, pages 521{532. AMS, 1993.

24. T. Walsh. Search in a Small World. In Proceedings of the International Joint
Conference on Arti�cial Intelligence, pages 1172{1177, Stockholm, Sweden, 1999.


