
Reasoning Under Varying and Uncertain Resource Constraints�

Eric J. Horvitz

Medical Computer Science Group

Knowledge Systems Laboratory

Stanford University

Stanford, California 94305

Abstract

We describe the use of decision-theory to opti-

mize the value of computation under uncertain

and varying resource limitations. The research is

motivated by the pursuit of formal models of ra-

tional decision making for computational agents,

centering on the explicit consideration of prefer-

ences and resource availability. We focus here on

the importance of identifying the multiattribute

structure of partial results generated by approx-

imation methods for making control decisions.

Work on simple algorithms and on the control

of decision-theoretic inference itself is described.

1 Computation Under
Uncertainty

We are investigating the decision-theoretic control of prob-

lem solving under varying constraints in resources required

for reasoning, such as time and memory. This work is

motivated by the pursuit of formal models of rational

decision making under resource constraints and our goal

of extending foundational work on normative rationality

to computational agents. We describe here a portion

of this research that centers on reformulating traditional

computational problems into strategies for generating and

reasoning about a spectrum of partial results characterized

by multiple dimensions of value. After describing work

on the solution of classical problems under uncertain and

varying resource constraints, we shall return brie
y to the

larger, motivating problem of computational rationality,

focusing on the pursuit of optimal strategies for comput-

ing beliefs and actions under resource constraints.

A rational agent applies an inference strategy with the

intention of performing an analysis that will be of some net

bene�t. There is usually uncertainty about the best way

to solve a problem because of incompleteness in knowl-

edge about (1) the value of alternative computed results

�This work was supported by a NASA Fellowship under
Grant NCC-220-51, by the National Science Foundation under
Grant IRI-8703710, and by the National Library of Medicine
under Grant RO1LM0429. Computing facilities were provided
by the SUMEX-AIM Resource under NIH Grant RR-00785.
Published in Proceedings of the Seventh National Conference on
Arti�cial Intelligence, Minneapolis, MN. August 1988. Morgan
Kaufmann, San Mateo, CA. pp. 111-116.

in a particular situation, (2) the di�culty of generating

results from a problem instance, and (3) the costs and

availability of resources (such as time) required for reason-

ing. We have been investigating the use of decision theory

for valuating alternative problem-solving strategies under

uncertainty. Thus, we de�ne components of computational

value in terms of expected utility [7]. The use of decision

theory to guide the allocation of computational e�ort was

proposed by Good several decades ago [3].

1.1 Computational Utility

We use the term computational utility, uc, to refer to the

net value associated with the commitment to a computa-

tional strategy. We decompose uc into two components:

the object-level utility, uo, and the inference-related util-

ity, ui. The object-level utility of a strategy is the bene�t

attributed to acquiring a result, without regard to the costs

associated with its computation. For example, the object-

level utility of a medical expert-system inference strategy

is the value associated with the information it generates

about the entities in a medical problem, such as alterna-

tive treatments and likelihoods of possible outcomes. The

inference-related component, ui, is the cost of the reason-

ing. This includes the disutility of delaying an action while

waiting for a reasoner to infer a recommendation.

The decomposition of computational utility focuses at-

tention explicitly on the costs and bene�ts associated with

problem-solving activity. In the general case, we must con-

sider the dependencies between the object- and inference-

related value. We assume the existence of a function f

that relates uc to uo, ui, and additional information about

the problem-speci�c dependencies that may exist between

the two components of value|that is,

uc(�; �;
) = f [uo(�;
); ui(�;
)]

where � and � represent parameters that in
uence respec-

tively the object- and inference-related utilities and
 rep-

resents the parameters that in
uence both the object- and

the inference-related utilities.

1.2 Multiple Attributes of Utility

In real-world applications, the object-level and inference-

related utilities frequently are functions of multiple attri-

butes. Dimensions of value can be acquired through con-

sultation with computer users. Computational utility may

be assessed as numerical quantities for particular out-

comes, or may be described by a function that represents

the relationships among costs and bene�ts associated with

alternative outcomes. Such functions assign a single utility

measure to computation based on the status of an n-tuple

of attributes. Let us assume that we can decompose uc into

uo and ui. A set of object-level attributes, vo1 ; : : : ; von ,

captures dimensions of value in a result, such as accuracy

and precision, and de�nes an object-level attribute space,

Ao: A sequence of computational actions, c, applied to

an initial problem instance, I, yields a result, �(I), that

may be described as a vector ~vo in Ao. Components of

the inference-related cost|such as the computation time,

memory, and, in some applications, the time required to

explain machine reasoning to a human|de�ne a resource

attribute space, Ar. In this paper, we simplify Ar to r,

the scalar quantity of time. If we assume that uo and ui
are combined with addition and ui(r) is the cost of delay,

we can say that

uc(~vo; r) = uo(~vo)� ui(r)

2 Toward a Continuum of Value

Much of work on the analysis of algorithms has been di-

rected at proving results about the time required for com-

puting a solution de�ned by simple goals and termination

conditions [1]. Although this perspective imposes useful

simpli�cation, it has biased synthesis and analysis toward

solution policies that are indi�erent to variation in the util-

ity of a result or to the costs and availability of resources.

We wish to increase the value of computation under lim-

ited and varying resources by identifying and characteriz-

ing classes of approximate or partial results that can be

produced for a fraction of the resources required by the

best available methods for generating �nal results.

Let c refer to a sequence of primitive computational ac-

tions. We de�ne a subclass of sequences of computational

actions, c�, that transform a speci�c problem instance I

(e.g., a randomly mixed �le of records) into a �nal result,

�(I) (e.g. a total ordering over records), without assis-

tance from an omniscient oracle, c�[I]! �(I). We de�ne

r(c�; I) as the resource required by c� to generate �(I)

from I. A majority of traditional algorithms generate spe-

ci�c c� given I, halting upon reaching a queried �(I).

2.1 Partial Results

Wide variations in the value of a result to an agent, uo, in

the availability of r, and in the cost ui(r) suggest that the

focus on time complexity for termination on �nal results

is limited; analyses centering on how good a solution can

be found in the time available can be crucial. The tradi-

tional approach is based, in part, on a tendency to assign

only one of two measures of utility to computational be-

havior: either a �nal solution can be computed, which has

maximumobject-level utility, uo(�(I)), or a solution is not

found in the time available and the e�ort is considered a

worthless expenditure. However, we can often construct

sequences that produce approximate or partial results that

have some fraction of uo(�).

We introduce
exibility into computation by de�ning an-

other class of computational actions, c� , that operate on

instances, I, to produce partial results, �(I), often requir-

ing a fraction of the reasoning resources needed by c� to

generate �(I). That is, c� [I] ! �(I) and r(c�; I) is the

resource required by c� to generate �(I). Partial results

may be viewed as transformations of desired �nal results

along one or more dimensions of utility where

0 � uo(�(I)) � uo(�(I))

and where uo maps a real-valued object-level utility to

attributes of �(I) and �(I). That is, in the context of

a query for �(I), �(I) has object-level utility less than or

equal to the utility of �(I). However, reasoning costs can

make c� preferable to all available c� in particular con-

texts.

We associate with each partial result a vector in the

space Ao for �(I). For the purposes of summarization,

it can be useful to de�ne a context-independent distance

metric D : Ao�Ao !R between points in this space. We

relate the di�erence in utility of �(I) and �(I) to a function

of the context and this distance. In general, however, the

most meaningful distance metric is the di�erence in utility

itself, uo(�(I)) � uo(�(I)). An example of a widely-used,

context-independent distance among results is the numer-

ical approximation, where D is a simple unidimensional

measure of precision (e.g., the result of a Taylor series car-

ried to a particular term). In this case, �(I) and �(I) are

separated by a distance in the space of reals.

2.2 More Sophisticated Partial Results

We can move beyond the familiar numerical approxima-

tion to consider cases where D represents the divergence

of �(I) from �(I) along higher-dimensional and more ab-

stract properties of a computational result. Some classes

of more sophisticated partial results are well-known. Oth-

ers suggest new directions for research on reasoning under

resource constraints. Dimensions in Ao often are based on

the end use of the result and re
ect human preferences.

Richer partial results include the output of Monte Carlo

simulation methods. These methods partially characterize

a probability of interest through probabilistically visiting

portions of a problem; they yield a sequence of probabil-

ity distributions over a set of states with additional com-

putation. Another class of partial result is generated by

randomized approximation algorithms. These results are

statements of the form the probability that the divergence

of �(I) is greater than x from �(I) is less than y. Ran-

domized algorithms may produce valuable partial results

in response to queries for �(I) ranging from bin packing

to probabilistic entailment. Within research on classical

algorithmic problems, we can move from the traditional

analysis of results at completion|such as sorting records

in a �le|to an examination of the manner in which alter-

native strategies re�ne valuable dimensions of a partial re-

sult as additional resource is expended. The manipulation

of partial results and alternative approximation strategies

is essential in reasoning about beliefs and actions under

varying resource constraints. As examples, partial results

may be generated by increasing the abstraction of proposi-

tions or by decreasing the completeness of dependencies in

a decision model. It may even be useful to develop a metric

that represents a distance in a conceptual space describ-

ing properties of inference. For example, a component of

value might be the probability that a result will be consis-

tent with an axiom or with a set of axioms.

2.3 Named Computational Strategies

To manage the complexity of computing, computer scien-

tists have de�ned and characterized computation in terms

of strategies. These computational policies include the fa-

miliar \named" sorting and searching algorithms. A strat-

egy, S, typically is de�ned as some repetitive pattern of

computational activity in conjunction with a set of simple

control rules that apply to a large class of inputs. A ma-

jority of strategies generate intermediate states that have

no object-level value and that terminate when a speci�c

queried �(I) is produced. We use S� to refer to such strate-

gies. Partial-result strategies, S� , have an ability to gen-

erate transformations c�. The iterative nature of many of

these strategies allows us to represent the result produced

by a strategy as a function of the problem instance and

the amount of resource applied|that is, S�(I; r) = �(I).

We can endow S� with termination criteria based on the

costs and bene�ts of continuing to compute.

Several subclasses of S� have the ability to re�ne attri-

butes of object-level value as a continuous or bounded-

discontinuous1, monotonically increasing function of al-

located resource. These incremental-re�nement policies

yield immediate object-level returns on small quantities of

invested computation, reducing the risk of dramatic losses

in situations of uncertain resource availability. The avail-

ability of a continuous range of partial results over some

range of resource also grants control reasoners
exibility to

optimize the tradeo� between uo(�(I)) and ui(c� ; I) under

varying object-level utilities and resource constraints. Par-

ticularly
exible spanning S� converge on �(I) and demon-

strate continuous, monotonically increasing re�nement as

the applied resource ranges from zero to the quantity of

resource required for convergence. It may be desirable for

S� to generate results that converge near or on �(I) for

quantities of resource less than or equal to the resources

required by the most e�cient known S� to produce �(I).

Unfortunately, this may not be the case: an agent fre-

quently must pay a resource penalty for having access to

�(I) at times before a preferred S� could generate �(I).

1Bounded discontinuity refers to a policy's ability to perform
a speci�ed � re�nement of one or more attributes in Ao for some
� expenditure of r, over a speci�ed range of r. Other desirable
properties for bounded-resource strategies are discussed in [5].

3 Uncertain Resources and
Challenges

Issues surrounding computation under varying and uncer-

tain resource limitations are being explored within the Pro-

tos project.2 We seek to develop, at design time, inexpen-

sive methods for selecting among strategies during real-

time reasoning. We have been assessing prototypical utility

and resource contexts for designing control decision rules.

We are particularly interested in control rules that use a

fraction of the available resource to examine the context

and instance, and construct or select a valuable strategy.

3.1 Prototypical Classes of Resource

Constraints

Several classes of functions describing ui have been exam-

ined, including the urgency, deadline, and urgent-deadline

situations. These cost functions are common in many real-

world applications and are based in such universal inter-

actions as lost opportunity and competition for limited

resources. The functions vary in form depending on the

nature and criticality of the situation.

Urgency refers to the general class of inference-related

utility functions that assign cost as some monotonically

increasing function of delay. The deadline pattern refers

to cases where ui(r) is 0 or insigni�cant until a certain level

of resource r = th is reached. At this point, computation

must halt, and the maximum object-level utility attained

before the halt must be reported immediately. Otherwise,

the result is worthless. The urgent-deadline requires con-

sideration of both the cost and availability of time.

3.2 Rational Decisions about

Computation

A rational computation-policy decision optimizes the

computational utility, uc. Most frequently, this optimiza-

tion must be done under uncertainty. Thus, we wish to

make use of probabilistic knowledge. By explicitly intro-

ducing uncertainty, we move the notion of a control rea-

soner from a knower to a believer, committed to making

its best guesses about the strategy to apply, given a prob-

lem, a problem-solving context, and background state of

information. We use � in the conditioning statement of

probabilities to denote the dependence of belief on back-

ground information. � may include a computer scientist's

beliefs about the performance of a strategy based on logical

knowledge, on empirical experience with the policy, and on

intuition. Such beliefs can be updated with empirical data

as a system's experience grows.

The performance of a policy can be represented as a

probability distribution over partial results generated by

the policy given an instance and a quantity of resource.

In Protos experiments, we assumed a set of prototypi-

cal contexts, each associated with speci�c object-level and

2Protos is a partial acronym for project on computational
resources and tradeo�s.

Position

Key

th

uc(S
A,I,r) > uc(S

B,I,r)

r(c , I) > r(c , I)A B
Φ Φ

Figure 1: A graphical representation of incremental re�ne-

ment by selection sort (left) and Shellsort (right).

inference-related utility functions. The computational util-

ity of a partial-result policy in urgent situations is

uc(S�; I; r) = max
r

Z
�(I)

[uo(S� ; I; r)�ui(r)] p[S�(I; r) = �(I)j�]

For valuating strategies limited to generating �nal results,

this optimization considers the likelihood of generating

the maximum object-level value, uo(�(I)) over a range of

resources. In urgent situations, a rational controller should

choose the strategy S� with the highest expected value,

S� = argmax
S

[uc(S; I; r)]

An agent immersed in a world of deadline situations must

also grapple with uncertainty about the amount of time

available for computation. Assume an agent has a proba-

bility distribution over the time available for computation

in a situation. Given a set of strategies, what is the opti-

mal strategy now? We �rst de�ne the amount of resource

that maximizes the expected utility of a policy,

rmax(S; I) = argmax
r

[uc(S; I; r)]

Then we consider cases where the deadline, th, occurs be-

fore rmax and c�ases where the deadline occurs after rmax.

Under an urgent-deadline situation S� is

argmax
S

�Z
th<rmax

p(thj�)uc(S; I; th) +max
r

[uc(S; I; r)]

Z
th�rmax

p(thj�)

�

In the pure deadline situation, we set ui = 0, equivalent

to substituting uc with uo in this equation. Similar inte-

grations yield the utility for cases where knowledge about

computation is encoded in terms of uncertainty in the

resources required to generate speci�ed results or where

there is uncertainty or time-dependent variation in uo or

ui.

4 Sorting Under Resource
Constraints

Our research is directed primarily on the control of

decision-theoretic inference. However, the problems have

been generalized to other computational tasks. Here, we

make use of the classic problem of sorting a �le of records to

present several issues in reasoning under varying resource

constraints. Our analysis centers on identifying valuable

dimensions of partial results, applying value functions that

capture preferences about the results, and characterizing

the ability of alternative strategies to re�ne results un-

der certain or uncertain time constraints. We shall return

brie
y to problems of belief and action after exploring re-

source considerations with sorting algorithms.

4.1 Multiple Dimensions of Value

We constructed a prototype system, named Protos/Algo

for exploring the value structure of alternative reasoning

strategies. The system reports uo, ui, and uc as a partial

result is generated. To gain intuition and to help with

the assessment of preferences, we have experimented with

the graphical representation of partial results and partial-

result trajectories. We used the system to probe the value

structure of sorting algorithms.

We have de�ned alternative attribute spaces, ASort

o
, and

explored the trajectories of the partial results produced by

several named sorting policies. We experimented with sev-

eral object-level and inference-related utility models that

map points in the sorting space to computational utility.

Sample dimensions of value that may be useful in char-

acterizing a partial sort include

� Disorder: the average distance between the current

locations and expected �nal locations for records in a

�le or within speci�ed portions of a �le

� High/low-end completion: the contiguous length of

positions, starting from the high (or low) end of the

�le, that contains records that are currently in the

positions they will occupy after the �le has been com-

pletely sorted

� Bounded disorder: an upper bound on the distance

between the current position and �nal position for any

record in a �le

Other attributes can be formulated by working with the

end user of a partial sort. For example, we can introduce

an attribute representing the proportion of records that

satisfy a particular level of bounded disorder or the prob-

ability that a partial sort will satisfy a speci�ed value of

high-end completion or bounded disorder. We could also

seek to characterize the manner in which algorithms re�ne

the values or probability distributions over attributes of

interest. We can even extend an attribute such as bounded

disorder to guide a search under resource constraints.

4.2 Alternative Trajectories Through a

Multiattribute Space

The multiattribute nature of partial results adds additional

richness to control decisions under resource constraints:

The decisions can depend on the details of the problem-

solving trajectories taken through the multiattribute par-

tial result space. That is, there are di�erent ways to re�ne

a result with the application of resource. Alternative S(I)

are associated with characteristic patterns of re�nement.

They may de�ne distinct sets of points, curves or surfaces

through Ao in response to the expenditure of r.

To help with visualizing re�nement trajectories in sort-

ing, Protos/Algo can display partial sorts, represented as

a set of points within a Cartesian space, where the axes

represent the index of an array and the value of the key

to be sorted. As indicated in the sequences in Figure 1,

a randomly mixed initial problem instance is transformed

into alternative sequences of partial results, depending on

the strategy applied. The left side of Figure 1 shows the

partial result trajectories of a selection sort; on the right

side, a Shellsort is pictured. The �nal result, Sort�(I),

is represented by a diagonal line. Shellsort is striking in

its ability to re�ne gracefully bounded disorder. Selection

sort is e�cient for re�ning low-end completion.

4.3 Sensitivity to Resources, Preferences,

and Trajectories

We found that decisions about the best sorting policy to

apply are sensitive to the availability and cost of resources,

the nature of the object-level and risk preferences of an

agent, and the structural details describing the re�nement

of results by strategies. Under uncertain and varying re-

source constraints, an algorithm with a slower completion

time may be preferred to a more e�cient algorithm. A

utility analysis can demonstrate the comparative value of

alternative sorting procedures for di�erent combinations

or weightings of the dimensions of partial sort described in

Section 4.2 for prototypical resource contexts. In sample

analyses, where I is the task of sorting a list of several

hundred randomly arranged keys

r(cSelect
�

; I) > r(cShell
�

; I)

That is, the selection sort is less e�cient in generating a

total ordering. Yet, given a utility model that places high

value on low-end completion, there exists a range of dead-

line times where the uc of the selection sort dominates

the faster Shellsort. Changes in the resources available or

in the object- and inference-related utility functions can

change the dominance. For example, diminishing the im-

portance of low-end completion in the object-level utility

uo or increasing the importance of disorder, increases the

expected utility of the Shellsort sort. The expected value

of the Shellsort also is boosted as the distribution over the

deadline time is skewed to greater values of r.

4.3.1 Utility of Continuity

Several sorting strategies continuously re�ne one or more

object-level attributes of a partial sort. For example, Shell-

sort continuously re�nes disorder and selection sort re�nes

completeness. In contrast, traditional versions of algo-

rithms with O(N logN) complexity [8]|including merge-

sort, heapsort, and quicksort|do not make valuable inter-

mediate results available, and thus may be dominated by

the polynomial approaches under conditions of uncertain

or poor resource availability, or high cost of reasoning.

In experiments comparing the graceful Shellsort to

quicksort and heapsort on instances of several thousand

randomly-arranged records, Shellsort could dominate the

algorithms, even though r(cShell
�

; I) > r(c
Quick

�
; I). We

can see the usefulness of continuous re�nement easily by

inspecting the computational utility equations in Section

3.2. Although heapsort may have an O(N logN) runtime,

if a deadline occurs at some time before completion �(I),

uo(�(I)) = 0. In fact, ui can make the wait costly. Thus,

under resource constraints, a more valuable result can be

generated by committing to a more conservative O(N1:5),

yet more graceful Shellsort.

5 Belief and Action Under
Resource Constraints

Our research on sorting under resource constraints was un-

dertaken to show the universality of resource-constraint is-

sues and to gain insight about more sophisticated bounded-

resource problem solving. We touch on these issues here

to bring perspective to the sorting work. See [4] and [5] for

additional discussion. We have focused on problems with

the control of decision-theoretic inference for making rec-

ommendations about action within complex, high-stakes

domains such as medicine and aerospace. Within such do-

mains, the losses associated with suboptimal decisions tend

to render simple satis�cing approaches inadequate and pro-

vide incentive for optimizing computational utility.

5.1 The Complexity of Rationality

Since its inception forty years ago, decision theory has

been accepted in several disciplines as a normative basis

for decision making. Recent research has focused on the

computational complexity of probabilistic reasoning, which

lies at the heart of decision-theoretic inference. The work

has centered on reasoning within directed graphs called

belief networks [10]. Belief networks are special cases of

more general graphical representations, called in
uence di-

agrams, that allow actions and utilities of alternative out-

comes to be represented in addition to beliefs [6]. Several

belief-network topologies have resisted tractable algorith-

mic solution. An example of a di�cult class of problems

is called the multiply-connected network. Inference with

these graphs has been shown to be NP-hard [2]. Problems

in complex areas such as medicine often require represen-

tation with multiply-connected networks. Thus, rational

beliefs and actions may demand intractable computation.

We are addressing the intractability of naive models of

normative rationality by using decision theory at the met-

alevel to reason about the most valuable decision model

and inference policy. There have been several discussions

of the use of decision theory for reasoning about the value

of analysis; for example, see [9]. In particular, we have

directed our attention to the development of partial-result

strategies for inferring the most valuable actions. A long-

term dream, motivating research on Protos and related

projects on automated decision-theoretic inference, is to

construct an integrated system akin to a Macsyma for be-

lief and action under resource constraints. Our current

work on real-world problems centers on the use of decision

analysis for designing control policies for decision-theoretic

inference under constraints in the tissue-pathology lab

(Protos/PF) and in the operating room (Protos/OR).

5.2 Partial-Result Strategies for

Computing Optimal Action

Given a problem instance, composed of a belief network

deemed to be a complete representation of a problem, and

a speci�c query about a belief or action, we often can for-

mulate an Ao that represents dimensions of value. We

can apply intelligent control techniques in an attempt to

maximize uc(Belief� ; I; r). We are exploring the genera-

tion of partial results through modulating the abstraction

and completeness of an analysis. Techniques for modulat-

ing the completeness include the probing of an inference

problem through directed or probabilistic search. These

methods can produce probability distributions or bounds

on probabilities of interest. We also can modulate the

completeness of a belief network model by deleting the

consideration of propositions or of dependencies among

propositions. In addition, the model can be reformulated

to report relevant qualitative answers. Finally, under se-

vere time pressure, general default beliefs and policies may

have more expected value than any new inference. Several

partial-result strategies display interesting multiattribute

trajectories with the commitment of additional resources.

As in the sorting example, the structure of the trajecto-

ries of alternative strategies can in
uence the selection of

an optimal reasoning strategy. See [5] for discussion of

trajectories of belief re�nement and for a view of default

reasoning as a resource-constrained, partial-result strategy.

6 Discussion

Our experimentation and analysis have highlighted sev-

eral issues about reasoning under varying and uncertain

resource constraints. First, it appears that interesting di-

mensions of value in partial results have been overlooked;

more attention has been directed on techniques for com-

puting a targeted �(I). There clearly is value in exploring

the rich multidimensional structure of partial-result strate-

gies. Rational decisions about computation, such as the

selection of a new strategy or the decision to cease comput-

ing, can be sensitive to details of the timewise-re�nement

trajectories, to the object-level utility function, and to the

uncertainties in the functions describing the cost and avail-

ability of reasoning resources. A wide range of computer-

science research e�orts may bene�t by pursuing the devel-

opment of re
ective strategies that are sensitive to varying

resource and utility conditions.

Strategies that continuously re�ne the value of par-

tial results with time are desirable for reasoning in sit-

uations of uncertain resource availability because they

can reduce losses and introduce additional
exibility

into computational decision making. The new oppor-

tunities for decisions frequently translate into increased

expected utility under resource constraints. The ability

of incremental-re�nement strategies to make intermediate

problem-solving states available also can be useful for cre-

ating new policies from sequences of strategies (e.g., apply

selection sort to bolster low-end completion e�ciently and

Shellsort to re�ne the bounds on disorder). A custom-

tailored sequence of strategies for generating �(I) or �(I)

will often have greater computational utility than do more

general, prede�ned policies.

We can introduce even more
exibility into reasoning

by moving the level of analysis from strategies to actions

to consider control opportunities at the microstructure of

computational activity. Although this task is more com-

plex, the �ner patterns of computation and control possible

may enable a reasoner to generate more ideal re�nement

trajectories. Such research may also elucidate the control

strategies implicit in familiar policies and stimulate the

creation of more general, decision-theoretic strategies that

could implement the familiar policies as special cases.

Identifying useful dimensions of utility in computation

and examining the re�nement of partial results as a func-

tion of invested resources can also direct attention to new

classes of approximation. For example, there is opportu-

nity for developing inexpensive strategies for transform-

ing valueless, intermediate states of traditional S� algo-

rithms into valuable partial results or into states that can

be handed-o� to other methods by a control reasoner. For

example, in the realm of sorting, such techniques could

be useful for concatenating O(N logN) strategies, in reac-

tion to a speci�c problem instance, intermediate states, or

observed real-time problem-solving trends.

Although our current work centers on the construction

of inexpensive policy-selection procedures, the best con-

trol strategies (i.e., the control strategies that maximize

uc) may be expensive. Clearly, the evaluation of the best

policy according to the decision formulae in Section 3.2

involves costly searching; in practice, we limit the analy-

sis to a tractable number of policy options out of an in�-

nite number of possibilities and move expensive analysis to

the design phase. Given a set of constraints on hardware,

knowledge, and time, it may be bene�cial for an agent to

allocate a signi�cant fraction of its scarce problem-solving

resources to the metalevel analysis of a computational pol-

icy or control strategy. Expending e�ort to recognize a

problem instance and context, to plan a solution, to moni-

tor and redirect reasoning, and to coordinate these compo-

nents of metareasoning may be important in customizing

default control policies developed at design time or learned

during resource-rich idle-time analyses. The possible op-

timality of expensive or varying allocation of resource for

control brings to light signi�cant questions about multi-

level analysis that focus attention on re
ective decision-

theoretic architectures, strategies, and formalisms [4]. It

also suggests that decision-theoretic inference may have to

rely, at some point, on poorly characterized assumptions.

7 Summary

Preliminary analyses of the multiattribute utility struc-

ture of partial results suggest that endowing agents with

knowledge about multiple dimensions of value in computed

results can increase the expected utility of their problem-

solving behavior. More generally, work on the decision-

theoretic design of computational policies for several prob-

lem classes has highlighted the promise of developing tech-

niques for maximizing the value of computation under con-

straints in knowledge, hardware, and time. Pursuing such

bounded optimality in problem solving appears to be par-

ticularly important for developing agents that must act in

dynamic, competitive, and high-stakes domains.

8 Acknowledgments

David Heckerman and Gregory Cooper provided useful

comments on an earlier draft. I am grateful to Bruce

Buchanan, John Breese, George Dantzig, Ronald Howard,

Nils Nilsson, Stuart Russell, Edward Shortli�e, and Patrick

Suppes for providing feedback on this research.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data

Structures and Algorithms. Addison-Wesley, Menlo

Park, CA, 1983.

[2] G.F. Cooper. Probabilistic inference using belief net-

works is NP-hard. Technical Report KSL-87-27,

Knowledge Systems Laboratory, Stanford University,

Stanford, California, May 1987.

[3] I.J. Good. A �ve-year plan for automatic chess. In

Machine Intelligence, 2:89{118, London, Oliver and

Boyd, 1968.

[4] E.J. Horvitz. The decision-theoretic control of prob-

lem solving under uncertain resources and challenges.

Technical Report KSL-87-16, Knowledge Systems

Laboratory, Stanford University, Stanford, California,

February 1987; revised November 1987.

[5] E.J. Horvitz. Reasoning about beliefs and actions

under computational resource constraints. In Pro-

ceedings of the Third AAAI Workshop on Uncertainty

in Arti�cial Intelligence, pages 429-444, Seattle, WA.

Association for Uncertainty in Arti�cial Intelligence,

Mountain View, CA, August 1987.

[6] R.A. Howard and J.E. Matheson. In
uence diagrams.

In Readings on the Principles and Applications of De-

cision Analysis, chapter 3, pages 721{762, Strategic

Decisions Group, Menlo Park, California, 1981.

[7] J. von Neumann and O. Morgenstern. Theory of

Games and Economic Behavior. Princeton University

Press, Princeton, New Jersey, 1947.

[8] D.E. Knuth. The Art of Computer Programming:

Sorting and Searching. Addison-Wesley, Reading,

Massachusetts, 1973.

[9] J.E. Matheson. The economic value of analysis and

computation. IEEE Transactions on Systems Science

and Cybernetics, SSC-4(3):325{332, 1968.

[10] J. Pearl. Fusion, propagation, and structuring in belief

networks. Arti�cial Intelligence, 29:241{288, 1986.

