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Abstract

We describe research and results centering on
the construction and use of Bayesian mod-
els that can predict the run time of problem
solvers. Our efforts are motivated by observa-
tions of high variance in the time required to
solve instances for several challenging prob-
lems. The methods have application to the
decision-theoretic control of hard search and
reasoning algorithms. We illustrate the ap-
proach with a focus on the task of predict-
ing run time for general and domain-specific
solvers on a hard class of structured con-
straint satisfaction problems. We review the
use of learned models to predict the ultimate
length of a trial, based on observing the be-
havior of the search algorithm during an early
phase of a problem session. Finally, we dis-
cuss how we can employ the models to inform
dynamic run-time decisions.

1 Introduction

The design of procedures for solving difficult problems
relies on a combination of insight, observation, and it-
erative refinements that take into consideration the be-
havior of algorithms on problem instances. Complex,
impenetrable relationships often arise in the process of
problem solving, and such complexity leads to uncer-
tainty about the basis for observed efficiencies and in-
efficiences associated with specific problem instances.
We believe that recent advances in Bayesian methods
for learning predictive models from data offer valuable
tools for designing, controlling, and understanding au-
tomated reasoning methods.
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Figure 1: Bayesian approach to problem solver design
and optimization. We seek to learn predictive mod-
els to refine and control computational procedures as
well as to gain insights about problem structure and
hardness.

We focus on using machine learning to characterize
variation in the run time of instances observed in in-
herently exponential search and reasoning problems.
Predictive models for run time in this domain could
provide the basis for more optimal decision making at
the microstructure of algorithmic activity as well as
inform higher-level policies that guide the allocation
of resources.

Our overall methodology is highlighted in Fig. 1. We
seek to develop models for predicting execution time
by considering dependencies between execution time
and one or more classes of observations. Such classes
include evidence about the nature of the generator that
has provided instances, about the structural properties
of instances noted before problem solving, and about
the run-time behaviors of solvers as they struggle to
solve the instances.

The research is fundamentally iterative in nature. We



exploit learning methods to identify and continue to
refine observational variables and models, balancing
the predictive power of multiple observations with the
cost of the real-time evaluation of such evidential dis-
tinctions. We seek ultimately to harness the learned
models to optimize the performance of automated rea-
soning procedures. Beyond this direct goal, the overall
exploratory process promises to be useful for providing
new insights about problem hardness.

We first provide background on the problem solving
domains we have been focusing on. Then, we describe
our efforts to instrument problem solvers and to learn
predictive models for run time. We describe the for-
mulation of variables we used in data collection and
model construction and review the accuracy of the in-
ferred models. Finally, we discuss opportunities for
exploiting the models. We focus on the sample appli-
cation of generating context-sensitive restart policies
in randomized search algorithms.

2 Hard Search Problems

We have focused on applying learning methods to char-
acterize run times observed in backtracking search pro-
cedures for solving NP-complete problems encoded as
constraint satisfaction (CSP) and Boolean satisfiabil-
ity (SAT). For these problems, it has proven extremely
difficult to predict the particular sensitivities of run
time to changes in instances, initialization settings,
and solution policies. Numerous studies have demon-
strated that the probability distribution over run times
exhibit so-called heavy-tails [10]. Restart strategies
have been used in an attempt to find settings for an
instance that allow it to be solved rapidly, by avoiding
costly journeys into a long tail of run time. Restarts
are introduced by way of a parameter that terminates
the run and restarts the search from the root with a
new random seed after some specified amount of time
passes, measured in choices or backtracks.

Progress on the design and study of algorithms for
SAT and CSP has been aided by the recent devel-
opment of new methods for generating hard random
problem instances. Pure random instances, such as
k-Sat, have played a key role in the development of al-
gorithms for propositional deduction and satisfiability
testing. However, they lack the structure that char-
acterizes real world domains. Gomes and Selman [9]
introduced a new benchmark domain based on Quasi-
groups, the Quasigroup Completion Problem (QCP).
QCP captures the structure that occurs in a variety of
real world problems such as timetabling, routing, and
statistical experimental design.

A quasigroup is a discrete structure whose multipli-
cation table corresponds to a Latin Square. A Latin

Square of order n is an n x n array in which n dis-
tinct symbols are arranged so that each symbol occurs
once in each row and column. A partial quaisgroup (or
Latin Square) of order n is an n x n array based on
n distinct symbols in which some cells may be empty
but no row or column contains the same element twice.
The Quasigroup Completion Problem (QCP) can be
stated as follows: Given a partial quasigroup of order
n can it be completed to a quasigroup of the same
order?
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Figure 2: Graphical representation of the quasigroup
problem. Left: A quasigroup instance with its comple-
tion. Right: A balanced instance with two holes per
row/column.

QCP is an NP-complete problem [5] and random in-
stances have been found to exhibit a peak in prob-
lem hardness as a function of the ratio of the number
of uncolored cells to the total number of cells. The
peak occurs over a particular range of values of this
parameter, referred to as a region of phase transition
[9, 2]. A variant of the QCP problem, Quasigroup with
Holes (QWH) [2], includes only satisfiable instances.
The QWH instance-generation procedure essentially
inverts the completion task: it begins with a randomly-
generated completed Latin square, and then erases col-
ors or “pokes holes.” Completing QWH is NP-Hard
[2]. A structural property that affects hardness of in-
stances significantly is the pattern of the holes in row
and columns. Balancing the number holes in each row
and column of instances has been found to significantly
increase the hardness of the problems [1].

3 Experiments with Problem Solvers

We performed a number of experiments with Bayesian
learning methods to elucidate previously hidden dis-
tinctions and relationships in SAT and CSP reason-
ers. We experimented with both a randomized SAT
algorithm running on Boolean encodings of the QWH
and a randomized CSP solver for QWH. The SAT al-
gorithm was Satz-Rand [11], a randomized version of
the Satz system of Li and Anbulagan [20]. Satz is the
fastest known complete SAT algorithm for hard ran-
dom 3-SAT problems, and is well suited to many inter-
esting classes of structured satisfiability problems, in-



cluding SAT encodings of quasigroup completion prob-
lems [10] and planning problems [17]. The solver is a
version of the classic Davis-Putnam (DPLL) algorithm
[7] augmented with one-step lookahead and a sophisti-
cated variable choice heuristic. The lookahead opera-
tion is invoked at most choice points and finds any
variable/value choices that would immediately lead
to a contradiction after unit propagation; for these,
the opposite variable assignment can be immediately
made. The variable choice heuristic is based on picking
a variable that if set would cause the greatest number
of ternary clauses to be reduced to binary clauses. The
variable choice set was enlarged by a noise parameter
of 30%, and value selection was performed determin-
istically by always branching on ‘true’ first.

The second backtrack search algorithm we studied is
a randomized version of a specialized CSP solver for
quasigroup completion problems, written using the
ILOG solver constraint programming library. The
backtrack search algorithm uses as a variable choice
heuristic a variant of the Brelaz heuristic. Further-
more, it uses a sophisticated propagation method to
enforce the constraints that assert that all the colors
in a row/column must be different. We refer to such
a constraint as alldiff. The propagation of the alldiff
constraint corresponds to solving a matching problem
on a bipartite graph using a network-flow algorithm
[9, 26, 24].

We learned predictive models for run-time, motivated
by two different classes of target problems. For the
first class of problem, we assume that a solver is chal-
lenged by an instance and must solve that specific
problem as quickly as possible. We term this the Sin-
gle Instance problem. In a second class of problem,
we draw cases from a distribution of instances and are
required to solve any instance as soon as possible, or
as many instances as possible for any amount of time
allocated. We call these challenges Multiple Instance
problems, and the subproblems as the Any Instance

and Max Instances problems, respectively.

We collected evidence and built models for CSP and
Satz solvers applied to the QWH problem for both
the Single Instance and Multiple Instances challenge.
We shall refer to the four problem-solving experiments
as CSP-QWH-Single, CSP-QWH-Multi, Satz-QWH-
Single, and Satz-QWH-Multi. Building predictive
Bayesian models for the CSP-QWH-Single and Satz-
QWH-Single problems centered on gathering data on
the probabilistic relationships between observational
variables and run time for single instances with ran-
domized restarts. Experiments for the CSP-QWH-
Multi and Satz-QWH-Multi problems centered on per-
forming single runs on multiple instances drawn from
the same instance generator.

3.1 Formulating Evidential Variables

We worked to define variables that we believed could
provide information on problem-solving progress for a
period of observation in an early phase of runs that we
refer to as the observation horizon. The definition of
variables was initially guided by intuition. However,
results from our early experiments helped us to refine
sets of variables and to propose additional candidates.

We initially explored a large number of variables, in-
cluding those that were difficult to compute. Although
we planned ultimately to avoid the use of costly ob-
servations in real-time forecasting settings, we were
interested in probing the predictive power and inter-
dependencies among features regardless of cost. Un-
derstanding such informational dependencies promised
to be useful in understanding the potential losses in
predictive power with the removal of costly features,
or substitution of expensive evidence with less expen-
sive, approximate observations. We eventually limited
the features explored to those that could be computed
with low (constant) overhead.

We sought to collect information about base values as
well as several variants and combinations of these val-
ues. For example, we formulated features that could
capture higher-level patterns and dynamics of the state
of a problem solver that could serve as useful probes
of solution progress. Beyond exploring base observa-
tions about the program state at particular points in
a case, we defined new families of observations such as
first and second derivatives of the base variables, and
summaries of the status of variables over time.

Rather than include a separate variable in the model
for each feature at each choice point—which would
have led to an explosion in the number of variables
and severely limited generalization—features and their
dynamics were represented by variables for their sum-
mary statistics over the observation horizon. The sum-
mary statistics included initial, final, average, mini-
mum, and maximum values of the features during the
observation period. For example, at each choice point,
the SAT solver recorded the current number of binary
clauses. The training data would thus included a vari-
able for the average first derivative of the number of
binary clauses during the observation period. Finally,
for several of the features, we also computed a sum-
mary statistic that measured the number of times the
sign of the feature changed from negative to positive
or vice-versa.

We developed distinct sets of observational variables
for the CSP and Satz solvers. The features for the
CSP solver included some that were generic to any
constraint satisfaction problem, such as the number
of backtracks, the depth of the search tree, and the



average domain size of the unbound CSP variables.
Other features, such as the variance in the distribution
of unbound CSP variables between different columns
of the square, were specific to Latin squares. As we
will see below, the inclusion of such domain-specific
features was important in learning strongly predictive
models. The CSP solver recorded 18 basic features
at each choice point which were summarized by a to-
tal of 135 variables. The variables that turned out
to be most informative for prediction are described in
Sec. 4.1 below.

The features recorded by Satz-Rand were largely
generic to SAT. We included a feature for the num-
ber of Boolean variables that had been set positively;
this feature is problem specific in the sense that under
the SAT encoding we used, only a positive Boolean
variable corresponds to a bound CSP variable (i.e. a
colored squared). Some features measured the current
problem size (e.g. the number of unbound variables),
others the size of the search tree, and still others the
effectiveness of unit propagation and lookahead.

We also calculated two other features of special note.
One was the logarithm of the total number of possible
truth assignments (models) that had been ruled out
at any point in the search; this quantity can be effi-
ciently calculated by examining the stack of assumed
and proven Boolean variable managed by the DPLL
algorithm. The other is a quantity from the theory of
random graphs called λ, that measures the degree of
interaction between the binary clauses of the formula
[23]. In all Satz recorded 25 basic features that were
summarized in 127 variables.

3.2 Collecting Run-Time Data

For all experiments, observational variables were col-
lected over an observational horizon of 1000 solver
choice points. Choice points are states in search pro-
cedures where the algorithm assigns a value to vari-
ables heuristically, per the policies implemented in the
problem solver. Such points do not include the cases
where variable assignment is forced via propagation of
previous set values, as occurs with unit propagation,
backtracking, lookahead, and forward-checking.

For the studies described, we represented run time as a
binary variable with discrete states short versus long.
We defined short runs as cases completed before the
median of the run times for all cases in each data set.
Instances with run times shorter than the observation
horizon were not considered in the analyses.

4 Models and Results

We employed Bayesian structure learning to infer pre-
dictive models from data and to identify key variables
from the larger set of observations we collected. Over
the last decade, there has been steady progress on
methods for inferring Bayesian networks from data
[6, 27, 12, 13]. Given a dataset, the methods typically
perform heuristic search over a space of dependency
models and employ a Bayesian score to identify mod-
els with the greatest ability to predict the data. The
Bayesian score estimates p(model|data) by approxi-
mating p(data|model)p(model). Chickering, Hecker-
man and Meek [4] show how to evaluate the Bayesian
score for models in which the conditional distributions
are decision trees. This Bayesian score requires a prior
distribution over both the parameters and the struc-
ture of the model. In our experiments, we used a uni-
form parameter prior. Chickering et al. suggest using
a structure prior of the form: p(model) = κfp, where
0 < κ ≤ 1 and fp is the number of free parameters in
the model. Intuitively, smaller values of κ make large
trees unlikely a priori, and thus κ can be used to help
avoid overfitting. We used this prior, and tuned κ as
described below.

We employed the methods of Chickering et al. to infer
models and to build decision trees for run time from
the data collected in experiments with CSP and Satz
problem solvers applied to QWH problem instances.
We shall describe sample results from the data col-
lection and four learning experiments, focusing on the
CSP-QWH-Single case in detail.

4.1 CSP-QWH-Single Problem

For a sample CSP-QWH-Single problem, we built a
training set by selecting nonbalanced QWH problem
instance of order 34 with 380 unassigned variables. We
solved this instance 4000 times for the training set and
1000 times for the test data set, initiating each run
with a random seed. We collected run time data and
the states of multiple variables for each case over an
observational horizon of 1000 choice points. We also
created a marginal model, capturing the overall run-
time statistics for the training set.

We optimized the κ parameter used in the structure
prior of the Bayesian score by splitting the training set
70/30 into training and holdout data sets, respectively.
We selected a kappa value by identifying a soft peak
in the Bayesian score. This value was used to build a
dependency model and decision tree for run time from
the full training set. We then tested the abilities of the
marginal model and the learned decision tree to pre-
dict the outcomes in the test data set. We computed
a classification accuracy for the learned and marginal



models to characterize the power of these models. The
classification accuracy is the likelihood that the classi-
fier will correctly identify the run time of cases in the
test set. We also computed an average log score for
the models.

Fig. 3 displays the learned Bayesian network for this
dataset. The figure highlights key dependencies and
variables discovered for the data set. Fig. 4 shows the
decision tree for run time.

The classification accuracy for the learned model is
0.963 in contrast with a classification accuracy of 0.489
for the marginal model. The average log score of the
learned model is -0.134 and the average log score of
the marginal model was -0.693.

Because this was both the strongest and most com-
pact model we learned, we will discuss the features it
involves in more detail. Following Fig. 4 from left to
right, these are:

VarRowColumn measures the variance in the number
of uncolored cells in the QWH instance across rows
and across columns. A low variance indicates the open
cells are evenly balanced throughout the square. As
noted earlier, balanced instances are harder to solve
than unbalanced ones [1]. A rather complex summary
statistic of this quantity appears at the root of the de-
cision tree, namely the minimum of the first derivative
of this quantity during the observation period. In fu-
ture work we will be examining this feature carefully
in order to determine why this particular statistic was
most relevant.

AvgColumn measures the ratio of the number of uncol-
ored cells and the number of columns or rows. A low
value for this feature indicates that the quasigroup is
nearly complete. The decision tree shows that a run is
likely to be fast if the minimum value of this quantity
over the entire observation period is small.

MinDepth is the minimum depth of all leaves of the
search tree, and the summary statistic is simply the fi-
nal value of this quantity. The third and fourth nodes
of the decision tree show that short runs are associ-
ated with high minimum depth and long runs with
low minimum depth. This may be interpreted as in-
dicating the search trees for the shorter runs have a
more regular shape.

AvgDepth is the average depth of a node in the search
tree. The model discovers that short runs are associ-
ated with a high frequency in the change of the sign
of the first derivative of the average depth. In other
words, frequent fluctuations up and down in the aver-
age depth indicate a short run. We do not yet have an
intuitive explanation for this phenomena.

VarRowColumn appears again as the last node in the
decision tree. Here we see that if the maximum vari-
ance of the number of uncolored cells in the QWH
instance across rows and columns is low (i.e., the prob-
lem remains balanced) then the run is long, as might
be expected.

4.2 CSP-QWH-Multi Problem

For a CSP-QWH-Multi problem, we built training and
test sets by selecting instances of nonbalanced QWH
problems of order 34 with 380 unassigned variables.
We collected data on 4000 instances for the training
set and 1000 instances for the test set.

As we were running instances of potentially different
fundamental hardnesses, we normalized the feature
measurements by the size of the instance (measured in
CSP variables) after the instances were initially sim-
plified by forward-checking. That is, although all the
instances originally had the same number of uncolored
cells, polynomial time preprocessing fills in some of the
cells, thus revealing the true size of the instance.

We collected run time data for each instance over
an observational horizon of 1000 choice points. The
learned model was found to have a classification accu-
racy of 0.715 in comparison to the marginal model ac-
curacy of 0.539. The average log score for the learned
model was found to be -0.562 and the average log score
for the marginal model was -0.690.

4.3 Satz-QWH-Single Problem

We performed analogous studies with the Satz solver.
In a study of the Satz-QWH-Single problem, we stud-
ied a single QWH instance (bqwh-34-410-16). We
found that the learned model had a classification ac-
curacy of 0.603, in comparison to a classification accu-
racy of 0.517 for the marginal model. The average log
score of the learned model was found to be -0.651 and
the log score of the marginal model was -0.693.

The predictive power of the SAT model was less than
that of the corresponding CSP model. This is reason-
able since the CSP model had access to features that
more precisely captured special features of quasigroup
problems (such as balance). The decision tree was still
relatively small, containing 12 nodes that referred to
10 different summary variables.

Observations that turned out to be most relevant for
the SAT model included:

• The maximum number of variables set to ‘true’
during the observation period. As noted earlier,
this corresponds to the number of CSP variables
that would be bound in the direct CSP encoding.



Figure 3: The learned Bayesian network for a sample CSP-QWH-Single problem. Key dependencies and variables
are highlighted.

Figure 4: The decision tree inferred for run time from data gathered in a CSP-QWH-Single experiment. The
probability of a short run is captured by the light component of the bargraphs displayed at the leaves.



• The number of models ruled out.

• The number of unit propagations performed.

• The number of variables eliminated by Satz’s
lookahead component: that is, the effectiveness
of lookahead.

• The quantity λ described in Sec. 3.1 above, a mea-
sure of the constrainedness of the binary clause
subproblem.

4.4 Satz-QWH-Multi Problem

For the experiment with the Satz-QWH-Multi prob-
lem, we executed single runs of QWH instances
with the same parameters as the instance studied in
the Satz-QWH-Single Problem (bqwh-34-410) for the
training and test sets. Run time and observational
variables were normalized in the same manner as for
the CSP-QWH-Multi problem. The classification ac-
curacy of the learned model was found to be 0.715.
The classification accuracy of the marginal model was
found to be 0.526. The average log score for the model
was -0.557 and the average log score for the marginal
model was -0.692.

4.5 Toward Larger Studies

For broad application in guiding computational prob-
lem solving, it is important to develop an understand-
ing of how results for sample instances, such as the
problems described in Sections 4.1 through 4.4, gener-
alize to new instances within and across distinct classes
of problems. We have been working to build insights
about generalizability by exploring the statistics of the
performance of classifiers on sets of problem instances.
The work on studies with larger numbers of data sets
has been limited by the amount of time required to
generate data sets for the hard problems being stud-
ied. With our computing platforms, several days of
computational effort were typically required to pro-
duce each data set.

As an example of our work on generalization, we re-
view the statistics of model quality and classification
accuracy, and the regularity of discriminatory features
for additional data sets of instances in the CSP-QWH-
Single problem class.

We defined ten additional nonbalanced QWH problem
instances, parameterized in the same manner as the
CSP problem described in Section 4.1 (order 34 with
380 unassigned variables). We employed the same data
generation and analysis procedures as before, building
and testing ten separate models. Generating data for
these analyses using the ILOG libary executed on an

Intel Pentium III (running at 600 Mhz) required ap-
proximately twenty-four hours per 1000 runs. Thus,
each CSP dataset required approximately five days of
computation.

In summary, we found significant boosts in classi-
fication accuracy for all of the instances. For the
ten datasets, the mean classification accuracy for the
learned models was 0.812 with a standard deviation of
0.101. The average log score for the models was -0.388
with a standard deviation of 0.167. The predictive
power of the learned models stands in contrast to the
classification accuracy of using background statistics;
the mean classification accuracy of the marginal mod-
els was 0.497 with a standard deviation of 0.025. The
average log score for the marginal models was -0.693
with a standard deviation of 0.001. Thus, we observed
relatively consistent predictive power of the methods
across the new instances.

We observed variation in the tree structure and dis-
criminatory features across the ten learned models.
Nevertheless, several features appeared as valuable
discriminators in multiple models, including statistics
based on measures of VarRowColumn, AvgColumn,
AvgDepth, and MinDepth. Some of the evidential fea-
tures recurred for different problems, showing signifi-
cant predictive value across models with greater fre-
quency than others. For example, measures of the
maximum variation in the number of uncolored cells
in the QWH instance across rows and columns (Max-
VarRowColumn) appeared as being an important dis-
criminator in many of the models.

5 Generalizing Observation Policies

For the experiments described in Sections 3 and 4, we
employed a policy of gathering evidence over an obser-
vation horizon of the initial 1000 choice points. This
observational policy can be generalized in several ways.
For example, in addition to harvesting evidence within
the observation horizon, we can consider the amount
of time expended so far during a run as an explicit
observation. Also, evidence gathering can be general-
ized to consider the status of variables and statistics
of variables at progressively later times during a run.

Beyond experimenting with different observational
policies, we believe that there is potential for harness-
ing value-of-information analyses to optimize the gath-
ering of information. For example, there is opportu-
nity for employing offine analysis and optimization to
generate tractable real-time observation policies that
dictate which evidence to evaluate at different times
during a run, conditioned on evidence that has already
been observed during that run.



5.1 Time Expended as Evidence

In the process of exploring alternate observation
policies, we investigated the value of extending the
bounded-horizon policy described in Section 3, with
a consideration of the status of time expended so far
during a run. To probe potential boosts with inclusion
of time expended, we divided several of the data sets
explored in Section 4.5 into subsets based on whether
runs with the data set had exceeded specific run-time
boundaries. Then, we built distinct run-time–specific
models and tested the predictive power of these models
on test sets containing instances of appropriate mini-
mal length. Such time-specific models could be used
in practice as a cascade of models, depending on the
amount of time that had already been expended on a
run.

We typically found boosts in the predictive power of
models built with such temporal decompositions. As
we had expected, the boosts are greatest for models
conditioned on the largest amounts of expended time.
As an example, let us consider one of the data sets
generated for the study in Section 4.5. The model
that had been built previously with all of the data
had a classification accuracy of 0.793. The median
time for the runs represented in the set was nearly
18,000 choice points. We created three separate sub-
sets of the complete set of runs: the set of runs that
exceeded 5,000 choice points, the set that exceeded
8,000 choice points, and the set that had exceeded
11,000 choice points. We created distinct predictive
models for each training set and tested these mod-
els with cases drawn from test sets containing runs of
appropriate minimal length. The classification accu-
racies of the models for the low, medium, and high
time expenditure were 0.779, 0.799, and 0.850 respec-
tively. We shall be continuing to study the use of time
allocated as a predictive variable.

6 Application: Dynamic Restart

Policies

A predictive model can be used in several ways to
control a solver. For example, the variable selection
heuristic used to decompose the problem instance can
be designed to minimize the expected solution time
of the subproblems. Another application centers on
building distinct models to predict the run time as-
sociated with different global strategies. As an ex-
ample, we can learn to predict the relative perfor-
mance of ordinary chronological backtrack search and
dependency-directed backtracking with clause learn-
ing [16]. Such a predictive model could be used to
decide whether the overhead of clause learning would
be worthwhile for a particular instance.

Problem and instance-specific predictions of run time
can also be used to drive dynamic cutoff decisions on
when to suspend a current case and restart with a new
random seed or new problem instance, depending on
the class of problem. For example, consider a greedy
analysis, where we deliberate about the value of ceas-
ing a run that is in progress and performing a restart
on that instance or another instance, given predictions
about run time. The predictive models described in
this paper can provide the expected time remaining
until completion of a current run. Initiating a new
run will have an expected run time provided by the
statistics of the marginal model. From the perspec-
tive of a single-step analysis, when the expected time
remaining for the current instance is greater than the
expected time of the next instance, as defined by the
background marginal model, it is better to cease ac-
tivity and perform a restart. More generally, we can
construct richer multistep analyses that provide the
fastest solutions to a particular instance or the highest
rate of completed solutions with computational effort.

We can also use the predictive models to perform com-
parative analyses with previous policies. Luby et al.
[21] have shown that the optimal restart policy, as-
suming full knowledge of the distribution, is one with
a fixed cutoff. They also provide a universal strat-
egy (using gradually increasing cutoffs) for minimizing
the expected cost of randomized procedures, assum-
ing no prior knowledge of the probability distribution.
They show that the universal strategy is within a log
factor of optimal. These results essential settle the
distribution-free case.

Consider now the following dynamic policy: Observe a
run for O steps. If a solution is not found, then predict
whether the run will complete within a total of L steps.
If the prediction is negative, then immediately restart;
otherwise continue to run for up to a total of L steps
before restarting if no solution is found.

An upper bound on the expected run of this policy can
be calculated in terms of the model accuracy A and the
probability Pi of a single run successfully ending in i
or fewer steps. For simplicity of exposition we assume
that the model’s accuracy in predicting long or short
runs is identical. The expected number of runs until
a solution is found is E(N) = 1/(A(PL − PO) + PO).
An upper bound on the expected number of steps in
a single run can be calculated by assuming that runs
that end within O steps take exactly O steps, and that
runs that end in O+1 to L steps take exactly L steps.
The probability that the policy continues a run past O
steps (i.e., the prediction was positive) is APL + (1−
A)(1−PL). An upper bound on the expected length of
a single run is Eub(R) = O+(L−O)(APL+(1−A)(1−
PL)). Thus, an upper bound on the expected time to



solve a problem using the policy is E(N)Eub(R).

It is important to note that the expected time depends
on both the accuracy of the model and the prediction
point L; in general, one would want to vary L in or-
der to optimize the solution time. Furthermore, in
general, it would be better to design more sophisti-
cated dynamic policies that made use of all informa-
tion gathered over a run, rather than just during the
first O steps. But even a non-optimized policy based
directly on the models discussed in this paper can out-
perform the optimal fixed policy. For example, in the
CSP-QWH-single problem case, the optimal fixed pol-
icy has an expected solution time of 38,000 steps, while
the dynamic policy has an expected solution time of
only 27,000 steps. Optimizing the choice of L should
provide about an order of magnitude further improve-
ment.

While it may not be surprising that a dynamic policy
can outperform the optimal fixed policy, it is interest-
ing to note that this can occur when the observation
time O is greater than the fixed cutoff. That is, for
proper values of L and A, it may be worthwhile to ob-
serve each run for 1000 steps even if the optimal fixed
strategy is to cutoff after 500 steps. These and other
issues concerning applications of prediction models to
restart policies are examined in detail in a forthcoming
paper.

7 Related Work

Learning methods have been employed in previous re-
search in a attempt to enhance the performance opti-
mize reasoning systems. In work on “speed-up learn-
ing,” investigators have attempted to increase plan-
ning efficiency by learning goal-specific preferences for
plan operators [22, 19]. Khardon and Roth explored
the offline reformulation of representations based on
experiences with problem solving in an environment
to enhance run-time efficiency [18]. Our work on using
probabilistic models to learn about algorithmic perfor-
mance and to guide problem solving is most closely re-
lated to research on flexible computation and decision-
theoretic control. Related work in this arena focused
on the use of predictive models to control computa-
tion, Breese and Horvitz [3] collected data about the
progress of search for graph cliquing and of cutset anal-
ysis for use in minimizing the time of probabilistic in-
ference with Bayesian networks. The work was mo-
tivated by the challenge of identifying the ideal time
for preprocessing graphical models for faster inference
before initiating inference, trading off reformulation
time for inference time. Trajectories of progress as
a function of parameters of Bayesian network prob-
lem instances were learned for use in dynamic de-

cisions about the partition of resources between re-
formulation and inference. In other work, Horvitz
and Klein [14] constructed Bayesian models consid-
ering the time expended so far in theorem proving.
They monitored the progress of search in a proposi-
tional theorem prover and used measures of progress
in updating the probability of truth or falsity of as-
sertions. A Bayesian model was harnessed to update
belief about different outcomes as a function of the
amount of time that problem solving continued with-
out halting. Stepping back to view the larger body of
work on the decision-theoretic control of computation,
measures of expected value of computation [15, 8, 25],
employed to guide problem solving, rely on forecasts
of the refinements of partial results with future com-
putation. More generally, representations of problem-
solving progress have been central in research on flex-
ible or anytime methods—procedures that exhibit a
relatively smooth surface of performance with the al-
location of computational resources.

8 Future Work and Directions

This work represents a vector in a space of ongoing re-
search. We are pursuing several lines of research with
the goals of enhancing the power and generalizing the
applicability of the predictive methods. We are explor-
ing the modeling of run time at a finer grain through
the use of continuous variables and prototypical named
distributions. We are also exploring the value of de-
composing the learning problem into models that pre-
dict the average execution times seen with multiple
runs and models that predict how well a particular in-
stance will do relative to the overall hardness of the
problem. In other extensions, we are exploring the
feasibility of inferring the likelihood that an instance
is solvable versus unsolvable and building models that
forecast the overall expected run time to completion
by conditioning on each situation. We are also inter-
ested in pursuing more general, dynamic observational
policies and in harnessing the value of information to
identify a set of conditional decisions about the pattern
and timing of monitoring. Finally, we are continuing
to investigate the formulation and testing of ideal poli-
cies for harnessing the predictive models to optimize
restart policies.

9 Summary

We presented a methodology for characterizing the run
time of problem instances for randomized backtrack-
style search algorithms that have been developed to
solve a hard class of structured constraint-satisfaction
problems. The methods are motivated by recent suc-
cesses with using fixed restart policies to address the



high variance in running time typically exhibited by
backtracking search algorithms. We described two dis-
tinct formulations of problem-solving goals and built
probabilistic dependency models for instances in these
problem classes. Finally, we discussed opportunities
for leveraging the predictive power of the models to
optimize the performance of randomized search pro-
cedures by monitoring execution and dynamically set-
ting cutoffs.
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