
CO
M

PU
TE

R
SC

IE
N

CE
S

Tractable near-optimal policies for crawling
Yossi Azara, Eric Horvitzb, Eyal Lubetzkyc, Yuval Peresb,1, and Dafna Shahafd

aDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel; bMicrosoft Research, Redmond, WA 98052; cCourant Institute of Mathematical
Sciences, New York University, New York, NY 10012; and dSchool of Computer Science, Hebrew University, Jerusalem 91904, Israel

Contributed by Yuval Peres, May 8, 2018 (sent for review March 30, 2018; reviewed by Anthony Bonato and Robert D. Kleinberg)

The problem of maintaining a local cache of n constantly chang-
ing pages arises in multiple mechanisms such as web crawlers
and proxy servers. In these, the resources for polling pages for
possible updates are typically limited. The goal is to devise a
polling and fetching policy that maximizes the utility of served
pages that are up to date. Cho and Garcia-Molina [(2003) ACM
Trans Database Syst 28:390–426] formulated this as an optimiza-
tion problem, which can be solved numerically for small values
of n, but appears intractable in general. Here, we show that
the optimal randomized policy can be found exactly in O(n log n)
operations. Moreover, using the optimal probabilities to define in
linear time a deterministic schedule yields a tractable policy that
in experiments attains 99% of the optimum.

web crawling | caching policies | scheduling optimization

Modern web crawlers and proxy servers strive to maintain
an up-to-date mirror of the Internet. More generally, var-

ious real-world applications rely on local caches of resources
that are changing without notification. This typically necessi-
tates actively polling the pages for changes, thus raising the
optimization problem of prioritizing these polls.

Our goal is to maximize the throughput of up-to-date pages
served, whence the two dominant factors in the optimization are
the change rate of the pages and their utility (for example, as rep-
resented by the frequency of requests for the pages). Intuitively,
the crawler should keep important pages as fresh as possible.
However, combining these criteria is nontrivial: For instance, the
server may wish to prioritize pages that are frequently updated
and, at the same time, ones that are more likely to be requested
in the future. Interestingly, the server might want to avoid polling
a page even if both criteria are met [e.g., if its change rate is too
high (since its local copy would quickly be outdated and thus have
lower utility)].

We focus here on the problem of maintaining a cache ofn pages
for which freshness is imperative, as formalized in the pioneering
work of Cho and Garcia-Molina (ref. 1) via a binary classification
of freshness (see also ref. 2). This could fit, e.g., a small cache of
pages that, if served, are guaranteed to be genuinely up to date,
whereas other requests would be served via slower mechanisms.
In ref. 1, the corresponding optimization problem was numerically
solved for small values of n in the special case where all pages
have equal popularity (i.e., each request is uniform over the set of
pages). The pages change via Poisson processes, and the authors
rely on a separate work (ref. 3) to estimate their change rates
from historical data. It was shown in ref. 3 (following ref. 4) that,
under the assumption that all pages have the same importance,
the optimal policy is neither the uniform one nor proportional to
the change rates, since “to improve freshness, we should penalize
the elements that change too often.” Rather, as described in the
account of that work in ref. 5:

The optimal method for keeping average freshness high includes
ignoring the pages that change too often, and the optimal for keeping
average age low is to use access frequencies that monotonically (and
sublinearly) increase with the rate of change of each page. ...Explicit
formulas for the re-visit policy are not attainable in general, but they
are obtained numerically, as they depend on the distribution of page
changes. Note that the re-visiting policies considered here regard all

pages as homogeneous in terms of quality – all pages on the Web are
worth the same – something that is not a realistic scenario, so fur-
ther information about the Web page quality should be included to
achieve a better crawling policy.

The more challenging setting where the page requests are
nonuniform is mentioned in ref. 1, section 6, where the authors
discuss the case of two possible weights for popularity.

Here, we provide an efficient solution for the general case of
arbitrary utility values and change frequencies for the n pages.
First, we show that the optimal randomized policy—whereby
each page is assigned a rate at which it is crawled, independently
of the other pages, subject to a constraint in terms of the overall
bandwidth—can be recovered exactly (as opposed to numerically
solved) in near-linear time. [Here, and in what follows, we refer
to a “randomized policy” as a shorthand for a (stationary) policy
where the pages to be refreshed are drawn independently from
the same distribution.] Thereafter, this solution yields, in linear
time, a deterministic (cyclic) policy maintaining the same update
frequencies (this typically outperforms the random policy one,
as discussed in ref. 1), which in numerical experiments achieved
99% of the (numerically solved) optimal solution (see Fig. 1 for its
performance on synthetic data in the framework of ref. 1). These
results extend via the same method to other flavors of the model,
such as discrete-time policies (where time is divided into slots, in
each of which the server polls a single page for an update), as well
as to situations where the freshness of each page is continuous,
and its decay is modeled by an exponential random variable.

We stress that one may incorporate mechanisms to approxi-
mate the change rates (as in ref. 3) and utilities of pages so as to
continually update the crawling policies as per Theorem 1 (see,
e.g., refs. 8–10, as well as refs. 11 and 12 for additional related
work on policies for web crawling).

Significance

We present a tractable algorithm that provides a near-optimal
solution to the crawling problem, a fundamental challenge
at the heart of web search: Given a large quantity of dis-
tributed and dynamic web content, what pages do we choose
to update a local cache with the goal of serving up-to-date
pages to client requests? Solving this optimization requires
identifying the best set of pages to refresh given popular-
ity rates and change rates—an intractable problem in the
general case. To overcome this intractability, we show that
the optimal randomized strategy can be efficiently deter-
mined (in near-linear time) and then use it to produce a
deterministic policy that exhibits excellent performance in
experiments.

Author contributions: E.H. designed research; Y.A., E.H., E.L., Y.P., and D.S. performed
research; and E.L. and Y.P. wrote the paper.

Reviewers: A.B., Ryerson University; and R.D.K., Cornell University.

The authors declare no conflict of interest. Reviewer R.D.K. is a former employee of
Microsoft Research and has been a consultant for the company.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
1 To whom correspondence should be addressed. Email: peres@microsoft.com.

www.pnas.org/cgi/doi/10.1073/pnas.1801519115 PNAS Latest Articles | 1 of 5

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:peres@microsoft.com
http://www.pnas.org/cgi/doi/10.1073/pnas.1801519115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1801519115&domain=pdf&date_stamp=2018-07-20

Fig. 1. Performance of the new algorithm for Problem 2 (solved exactly) vs. the optimum (OPT, numerically solved), the change rate-directed policy studied
in ref. 1 (numerically solved), and utility-proportional and random (uniform) policies. A synthetic dataset had 1,000 pages with change rates independent
and identically distributed (i.i.d.) Uniform [0, 1], and utilities were (independently) either i.i.d. Zipf (with exponent 2 and range 10000) or i.i.d. Uniform [0, 1].
For more on the standard modeling of web page utilities via power laws see, e.g., refs. 6 and 7, section 2.

Beyond the scope of web crawling, an efficient solution for
the above problem may find other applications in the context of
bicriteria optimization and scheduling problems. A related prob-
lem of scheduling maintenance service to machines was studied
in refs. 13 and 14, where the authors assumed activities of sev-
eral types, under the constraint that at most a single activity can
be scheduled to any one period. The problem is then to find
an optimal schedule specifying at which periods to execute each
of the activity types to minimize the long-run average cost per
period.

Optimal Randomized Update Policy
We formalize the optimization problem for finding a random
(stationary) policy first for the discrete-time setting, followed by
the continuous-time setting which was studied in ref. 1.

Discrete-Time Policies. A server maintains a pool of n pages. Time
is partitioned into units, to be thought of as the amount of
time it takes the server to update a single page in its pool. We
use the following two standard ways to quantify the average
freshness of these pages over time, weighted by their request fre-
quency or importance (see, e.g., ref. 1, definitions. 2.1 and 6.1).
In this model, the server updates its pages in discrete time, while
requests may occur in continuous time.

i) Request rate model: Requests for pages arrive accord-
ing to independent Poisson processes: Let µi > 0 denote
the rate of requests for page i . Formally, the (random)
request sequence is {(Ij ,Tj)}Nj=1, where (Ij ,Tj) denotes
a request at time Tj for page Ij ∈{1, . . . ,n}, and 0 =
T0 <T1 <T2 < . . .; let FRESH(i , t) be the event that
page i is fresh at time t . The goal of the server is to
maximize

E
[

1

N

N∑
j=1

1{FRESH(Ij ,Tj)}
]
. [1]

[See Fig. 1 for simulations depicting
∑N

j=1 1{FRESH(Ij ,Tj)} for
various update policies.]

ii) Utility model: Each page is assigned a predetermined non-
negative weight µi measuring its importance. Given the time
horizon H , the server wishes to maximize

E
[

1

H

H∑
t=1

n∑
i=1

µi 1{FRESH(i , t)}
]
. [2]

In both models, pages are modified in the following way:
Let 0<∆i < 1 denote the probability that page i is changed
in a given time unit, independently of other pages and time
steps.

The update policy of the server comprises a distribution
{pi}ni=1 over pages. For concreteness, assume that in each
time unit the server updates one page independently via this
distribution (alternatively, the server may construct a periodic
scheduling policy using these frequencies; see Algorithm 3). If
page i is changed and the server updates it in the same time
step, then this page is fresh until the next time it changes.

We will argue that, for large N and H , both models correspond
to the following:

Problem 1 (Discrete-Time Randomized Policy). INPUT: Utility and
change rates for each of the pages: {(µi , ∆i)}ni=1 (where µi > 0 and
0<∆i < 1 for all i).

OUTPUT: Update frequencies for the pages: p = (p1, . . . , pn)
(where pi ≥ 0 for all i and

∑
i pi = 1), maximizing

F1(p) =
∑
i

µipi
pi + ∆i − pi∆i

. [3]

Continuous-Time Policy. The following was studied in ref. 1 for the
case where µi = 1 for all i .

iii) Request and change rates model: Let ∆i > 0 denote a Pois-
son rate at which page i is changed, and let µi > 0 denote
the Poisson rate at which page i is being requested (part
a). Let ρi ≥ 0 denote the Poisson rate at which the server
updates page i , where

∑
ρi =R for some R> 0 (the total

bandwidth). Given R and some time horizon H , the goal of
the server is to maximize

E
[

1

H

∫ H

0

(n∑
j=1

µj 1{FRESH(j , t)}
)
dt

]
. [4]

(cf. ref. 1, theorem 4.1). We will argue that, for large H , this
optimal random policy corresponds to the following problem:

2 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1801519115 Azar et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1801519115

CO
M

PU
TE

R
SC

IE
N

CE
S

Fig. 2. Optimal solution p* [global minimum of F1(p)] for a synthetic dataset. In red, the line µ=λ∆ is representing the threshold λ such that pi* = 0 if
and only if µi/∆i ≤λ.

Problem 2 (Continuous-Time Randomized Policy). INPUT: Band-
width R> 0 and request and change rates for each of the pages:
{µi , ∆i}ni=1 (where µi , ∆i > 0 for all i).

OUTPUT: Update rates for the pages: ρ= (ρ1, . . . , ρn) (where
ρi ≥ 0 for all i and

∑
i ρi =R), maximizing

F2(ρ) =
∑
i

µiρi
ρi + ∆i

. [5]

Note that the cost function F2(ρ) above is the cost function for a
random stationary policy; in the context of a deterministic policy
where the update rates are ρi , one would replace it by

F (ρ) =
∑
i

µi
1− exp(−∆i/ρi)

∆i/ρi
, [6]

as in ref. 1, section 4 (denoted the average freshness of the
database).

Solution. Our main result provides efficient algorithms to find the
unique solutions for Problems 1 and 2.

Theorem 1. For each set of input parameters for Problem 1, there is
a unique p∗ that achieves the global maximum of F1(p) subject to
the constraints 0≤ pi ≤ 1 and

∑
i pi = 1. Furthermore, there is an

explicit algorithm (Algorithm 1 below) that finds the unique solution
p∗ in time O(n log n).

Analogously, for Problem 2, for every set of admissible input
parameters, there exists a unique ρ∗ achieving the global maximum
of F2(ρ), and Algorithm 2 finds the solution ρ∗ in time O(n log n).

Following are the aforementioned algorithms for finding the
optimal policies p∗:

Algorithm 1: Find Optimum of Problem 1

Input: µ, ∆ popularity and change rate vectors of length n
Output: p stochastic policy
1. Sort µ, ∆ by an ascending order of µi/∆i .
2. Let

r← [
n∑

i=1

√
µi∆i

1−∆i
, s← [

n∑
i=1

∆i

1−∆i
.

3. for i = 1 to n do
4. if µi/∆i ≤

(
r

1+s

)2
then

5. pi←[0

6. r← [r −
√
µi∆i

1−∆i

7. s←[s − ∆i
1−∆i

8. else
9. pi← [(1+s)

√
µi∆i−r∆i

r(1−∆i)

10. Return p.

Algorithm 2: Find Optimum of Problem 2

Input: Bandwidth R> 0 and µ, ∆ popularity and change rate
vectors of length n .

Output: ρ stochastic policy
1. Sort µ, ∆ by an ascending order of µi/∆i .
2. Let

r← [
n∑

i=1

√
µi∆i , s← [

n∑
i=1

∆i .

3. for i = 1 to n do
4. if µi/∆i ≤

(
r

R+s

)2
then

5. ρi←[0
6. r← [r −

√
µi∆i

7. s←[s −∆i

8. else
9. ρi←[

√
µi∆i(R + s)/r −∆i

10. Return. ρ

Both algorithms proceed by first sorting the pages according
to µi/∆i , then linearly processing them to determine p∗ (Fig. 2).

Proofs. To see that Problems 1 and 2 indeed capture the objec-
tive functions in the aforementioned models, first consider the
request rate model. Since requests for page i arrive indepen-
dently according to a Poisson (µi) process, given the history until
time Tj−1, the variable Tj −Tj−1 is a minimum of independent
exponential variables with rates µ1, . . . ,µn , and

P(Ij = i) =µi/
∑
l

µl for every i ∈{1, . . . ,n}. [7]

Recall that the following holds for any t0. Page i was initially out-
dated at time 0, and in each of the time units t ∈{1, . . . , t0} it had
probability pi to be fetched (denote this event as Bt) and prob-
ability ∆i to be modified (denote this event as Ct), both events
being independent of each other [hence P(Bt ∩Ct) = pi∆i] and
other time steps. Page i is fresh at time t0 + 1 if and only if the

Azar et al. PNAS Latest Articles | 3 of 5

event Bt occurred for some t ≤ t0, and Ct did not occur between
times t + 1, . . . , t0. In particular, if we let

Et0 :=

t0⋃
l=1

(Bl ∪Cl),

(the event that page i is either fetched or modified before time
t0 + 1), then Et0 ⊃ FRESH(i , t0 + 1)0, and since P(FRESH(i , t0 +
1) pEt0) = pi

pi+∆i−pi∆i
(by looking at the last time point l where

Bl ∪Cl occurred), it now follows that

P(FRESH(i , t0 + 1)) =P (FRESH(i , t0 + 1) pEt0)P(Et0)

=
pi

pi + ∆i − pi∆i

[
1− ((1− pi)(1−∆i))

t0
]
.

Let ε> 0. It now suffices to take a burn-in period logarithmic
in ε (recall that every ∆i is bounded away from 1), namely,
t0 = dlog1−δεe where δ= mini∆i . For all Tj > t0 we have that
P(FRESH(Ij ,Tj)) is simply∑

i

µi∑
l µl
· pi
pi + ∆i − pi∆i

=
1∑
l µl

F1(p),

up to a multiplicative error of 1 + ε. This matches Eq. 1 up to the
policy-independent factor

∑
l µl , as required.

An alternative derivation of F1(p) in the request rate model is
to write an explicit form for x (i)

t =P(FRESH(i , t)). At time 0 we
have x

(i)
0 = 0 for all i , and for t ≥ 1 we have

x
(i)
t+1 = (1− pi)(1−∆i)x

(i)
t + pi .

Iterating the above recursion (and using that x
(i)
0 = 0) we find

that

x
(i)
t = pi

1− ((1− pi)(1−∆i))
t

1− (1− pi)(1−∆i)

=
pi

pi + ∆i − pi∆i

[
1− ((1− pi)(1−∆i))

t],
giving the same approximation guarantee.

In view of Eq. 7, we see that the optimized quantity in the
request rate model was precisely

∑
t

∑
i

µi∑
j µj

P(FRESH(i , t)),
which coincides with Eq. 2 (the utility model) up to rescaling.

Finally, consider the continuous-time model. Repeating the
arguments that led to Eq. 3, and using the fact that with prob-
ability ρi

ρi+∆i
the exponential clock that rings first among two

with rates ρi , ∆i is the one corresponding to the page update,
the objective function in the above setting now takes the form
given in Problem 2.

When comparing Eq. 5 to Eq. 3, the denominator lacks the
term ρi∆i , which corresponds to P(Bt ∩Ct), the probability that
at time t page i would both be updated and be modified. Intu-
itively, in continuous time this term no longer exists, since each
of these events now occurs whenever an independent exponen-
tial clock rings, hence they almost surely never occur at the
same time.

Proof of Theorem 1: Recalling the definition of F1(p) as given
in Eq. 3, for every 1≤ i < j ≤n we have

∂F1

∂pi
=

µi∆i

(pi + ∆i − pi∆i)
2 , [8]

∂2F1

∂p2
i

=− 2µi∆i(1−∆i)

(pi + ∆i − pi∆i)
3 ,

∂2F1

∂pi∂pj
= 0.

LetQ= [0, 1]n . Using Lagrange multipliers, if p = (p1, . . . , pn)∈
Q is a local maximum of F1 and satisfies

∑
i pi = 1, then either

it belong to ∂Q, the boundary of the domain Q, or p is a
solution to the following system of equations in p1, . . . , pn ,
λ∈R:

λ=
µi∆i

(pi + ∆i − pi∆i)
2 (i = 1, . . . ,n),

n∑
i=1

pi = 1.

[Note that the constraint function g(p) :=
∑

i pi has ∇g =
(1, . . . , 1); in particular,∇g 6=0 inQ.] Moreover, since F1 is con-
cave on Q, every local extremum in the interior of Q is a global
maximum.

Rearranging the first equation, we have

pi =

√
µi∆i
λ
−∆i

1−∆i
, [9]

and plugging it in the second one it follows that

λ=

(∑
i

√
µi∆i

1−∆i

1 +
∑

i
∆i

1−∆i

)2

. [10]

Claim 2. Assume without loss of generality that µ1
∆1
≤ µ2

∆2
≤ . . .≤

µn
∆n

. Then F1 has a unique global maximizer p∗ in the sim-
plexQ∩{

∑
i pi = 1}. Furthermore, there exists Λ∈{0, . . . ,n − 1}

such that p∗i = 0 if and only if i ≤Λ.
Proof: Suppose that an optimal solution p∗ has p∗i > 0

whereas p∗j = 0 for some i < j . By Eq. 8 we have

∂F1
∂pi

∣∣
{pi=0}=µi/∆i ,

∂F1
∂pj

∣∣
{pj =0}=µj/∆j .

Since ∂F1/∂pi is monotone decreasing in pi we have

∂F1
∂pi

(p∗)<µi/∆i ≤µj/∆j ,

where the last inequality used that i < j . Hence, shifting a suffi-
ciently small mass ε> 0 from p∗i to p∗j would increase the value
of F1, contradicting our optimality assumption on p∗.

We have thus established the existence of Λ(p∗) as in the state-
ment. Considering the smallest possible Λ, and recalling F1 is
strictly concave, now implies the uniqueness of p∗.

The above claim already implies an algorithm—albeit a sub-
optimal one—for finding the unique feasible optimum of F1:

• Sort the variables as in Claim 2, and for each Λ∈{0, . . . ,n −
1}, compute λ according to Eq. 10 restricted to the variables
{pΛ+1, . . . , pn} (setting pi = 0 for i ≤Λ), thus obtaining the
values of pi (i >Λ) via Eq. 9.

• If some Λ yields 0≤ pi ≤ 1 for all i ∈{Λ + 1, . . . ,n}, this is
guaranteed to be the unique optimal solution.

Since each iteration over Λ involves O(n −Λ) steps, this
algorithm has a time complexity of O(n2).

It is natural to ask how the outputs of the various iterations on
Λ relate to the final optimal solution and, namely, whether vari-
ables that are infeasible in a given iteration are necessarily 0 in
the final optimum. The next theorem establishes that indeed this
is the case, providing a faster algorithm for finding the optimum
of F1 subject to the required constraints.

Corollary 3. Let p∗= (p∗1 , . . . , p∗n) be the optimal solution to Prob-
lem 1, and assume that µ1

∆1
≤ µ2

∆2
≤ . . .≤ µn

∆n
. Let p = (p1, . . . , pn)

be the solution of Eqs. 9 and 10. If p1≤ 0 then necessarily
p∗1 = 0.

4 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1801519115 Azar et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1801519115

CO
M

PU
TE

R
SC

IE
N

CE
S

Proof: This follows immediately from Claim 2 since, if p∗1 > 0,
then Λ = 0 in that claim, thus pi = p∗i > 0 for all i , as in that case
the global maximum is attained in the interior ofQ.

Rearranging Eq. 9, observe that pi ≤ 0 if and only if µi/∆i ≤λ.
In view of the above corollary, if p1≤ 0 in p (or equivalently,
µ1/∆1≤λ) then we may obtain the optimal p∗ by excluding
p1 from the equations and re-solving the system—equivalent to
setting µ1 = ∆1 = 0 in Eqs. 9 and 10. Applying this recursively
establishes that Algorithm 1 indeed solves Problem 1.

To solve Problem 2, bearing in mind that again F2 is con-
cave on Q, we can repeat the calculation of the corresponding
Lagrange multipliers and obtain the following analogues of Eqs.
9 and 10:

ρi =

√
µi∆i

λ
−∆i , λ=

(∑
i

√
µi∆i

R +
∑

i ∆i

)2

. [11]

As the arguments of Claim 2 and Corollary 3 remain valid for
this setting, we deduce that Algorithm 2 solves Problem 2 in time
O(n log n). This concludes the proof of Theorem 1.

Remark 4 (nonbinary page freshness): The analysis of the binary
freshness extends to a notion of exponentially decreasing fresh-
ness, as formulated next, analogous to Eq. 1. Given a series
of requests (I1,T1), . . . , (IN ,TN), where at time Tj the user
requests page Ij (the request rate model), the goal of the server
is to maximize

E
[

1

N

N∑
j=1

exp (−∆i A(Ij ,Tj))

]
, [12]

where the age of page Ij at time Tj is given by

A(Ij ,Tj) =Tj −LastFetchIj (Tj),

and LastFetchi(t) is the last time page i was fetched before
time t (or −∞ if it was never fetched). Since the expression
in Eq. 4 (binary changes in continuous time) equals the one in
Eq. 12 (exponentially decaying freshness in discrete time), Theo-
rem 1 implies that Algorithm 2 finds the unique optimum of the
optimization problem corresponding to the latter.

Derandomizing the Optimal Random Policy
Cho and Garcia-Molina (ref. 1, section 4.4) compared the per-
formances of page updates via deterministic, random, and semi-
random policies (referred to as fixed-order, random-order, and
purely random; in the special case where the update rates are
all equal, these correspond to repeatedly cycling through an
ordered list of all pages ref. 1, alg. 4.1; repeatedly drawing a
random permutation of the pages and going through it ref. 1,
alg. 4.2; and repeatedly sampling an i.i.d. uniform page ref. 1,
alg. 4.3, respectively), showing the advantage of the determinis-
tic one (indeed, when comparing Eqs. 5 and 6, one has F (ρ)≥
F2(ρ) for every ∆, ρ, as the inequality 1−exp(−x)

x
≥ 1

1+x
reduces

to 1 + x ≤ ex which holds for all x). It is thus advantageous
to transform the optimal stochastic solution ρ= (ρ1, . . . , ρn)
into a carousel where the frequency of page i is approximately
ρi . An efficient way to form such a carousel is the earliest-
deadline-first (EDF) policy, introduced in ref. 15 in the context
of periodic task scheduling. In our setting, this corresponds to the
following:

Algorithm 3: EDF Derandomization

Input: Optimal random policy (ρi)
n
i=1, and ε> 0.

Output: A sequence (ω1, . . . ,ωT) for T = dε−1e such that, if
we let Nk ,t := #{i ≤ t :ωi = k}, then

maxk |ρk −Nk ,T/T | ≤ ε.
1. δk←[0 for k = 1, . . . ,n .
2. for t = 1 to T do.
3. δk←[δk + ρk for k = 1, . . . ,n .
4. S←[{k : δk > 0} and Dk← [d(1− δk)/ρke for k ∈S .
5. k0←[argmin{Dk : k ∈S} (breaking ties arbitrarily).
6. ωt← [k0 and δk0←[δk0 − 1.
7. Return (ω1, . . . ,ωT).

This algorithm is guaranteed to satisfy maxk ,t |tρk −Nk ,t | ≤ 1
for all t = 1, . . . ,T (see ref. 16, thm. 3, as well as ref. 17) and
runs in time O(n/ε). Fig. 1 depicts the performance of the
derandomized policy.

1. Cho J, Garcia-Molina H (2003) Effective page refresh policies for web crawlers. ACM
Trans Database Syst 28:390–426.

2. Cho J, Garcia-Molina H (2000) Synchronizing a database to improve freshness. Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, May 16-18, 2000, Dallas, TX (Association for Computing Machinery, New York),
pp. 117–128.

3. Cho J, Garcia-Molina H (2003) Estimating frequency of change. ACM Trans Internet
Technol 3:256–290.

4. Coffman EG, Liu Z, Weber RR (1998) Optimal robot scheduling for web search engines.
J Scheduling 1:15–29.

5. Castillo C (2004) Effective web crawling. PhD thesis (University of Chile, Santiago).
Available at www.dcc.uchile.cl/tesis/doctorado/Castillo Ocaranza.pdf.

6. Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching and Zipf-like distribu-
tions: Evidence and implications. Proceedings of the 1999 IEEE INFOCOM (IEEE, New
York), pp. 126–134.

7. Bonato A (2008) A Course on the Web Graph, Graduate Studies in Mathematics
(American Mathematical Society, AARMS, Providence, RI), Vol 89, pp. xii, 184.

8. Horvitz E (1998) Continual computation policies for utility-directed prefetching. Pro-
ceedings of the 1998 ACM Conference on Information and Knowledge Management
(Association for Computing Machinery, New York), pp. 175–184.

9. Horvitz E (2001) Principles and applications of continual computation. Artif Intell
126:159–196.

10. Shahaf D, Horvitz E (2009) Investigations of continual computation in IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, CA, USA (Association for the Advancement of Artifical Intelligence, Palo
Alto, CA), July 11-17, 2009, pp. 285–291.

11. Gal A, Eckstein J (2001) Managing periodically updated data in relational databases:
A stochastic modeling approach. J ACM 48:1141–1183.

12. Sia KC, Cho J, Cho H (2007) Efficient monitoring algorithm for fast news alerts. IEEE
Trans Knowl Data Eng19:950–961.

13. Anily S, Glass CA, Hassin R (1998) The scheduling of maintenance service. Discrete
Appl Math 82:27–42.

14. Bar-Noy A, Bhatia R, Naor J, Schieber B (2002) Minimizing service and operation costs
of periodic scheduling. Math Oper Res 27:518–544.

15. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-
real-time environment. J ACM 20:46–61.

16. Tijdeman R (1980) The chairman assignment problem. Discrete Math 32:323–
330.

17. Angel O, Holroyd AE, Martin JB, Propp J (2009) Discrete low-discrepancy sequences.
arXiv:0910.1077.

Azar et al. PNAS Latest Articles | 5 of 5

http://www.dcc.uchile.cl/tesis/doctorado/Castillo_Ocaranza.pdf

